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SUMMARY

Objective

The ol~jOliv'4 WNK intformattiotn concerning [lie organivtation of pilots' inetnories for eritival flight relatled
it oingilon mla vstrip io oflly systenia Iic diffe rc ires; ill ineillory st ructuren t hat were related to differelgwes ill

Bockground/Rativenale

Heslearch Into natural language lita suggested that retrieval of information fromt memory is affected by tihe

tirganisaitiun of tmemnory. More rapid and effective retrieval can result from a inore efficient and economtical storage.
st1ructure, The organisation of Intformationun memory cah)ove a critical impact on flying performtance.
Uinderstanditng how critical information is organised in memory can be extremely useful to training program
dosignrs antd evaluators asl well as Instructors and others interested in increasing lthe effectiveness of thia pilot.
uIreraft stysemi. Knowledge of how Individuals develop systems for organlaing critical informatiotn can be used to
tailor trtaitnittg wystent to provide students the conceptual framework that will load to optimal learning. It may also
p~rovidei a useful selection toot by allowing Instructors to deternmine which Itndividuals have mnastered lte1
prerequisitie rottctipts for muccessi in a particu lar training program,

Approach

Two Nets of stimtulus tnstwrials displayed ott thea console of a Terak 8510/A inticroconttputer were premented to
four groups of officersi A~r National Guard pilots (CPa), Fighter Lead-in Instructor Oilots (11's). recent
U1ndergraduate Pilot Trie.ning (UPT) graduates. and Instructor Weapons System Officers (WSOa). Three statistical
titelniqueN (htierarcihical cluster analysis, ,ulti-dimettaional scaling (MDS) and general weighted network were
timed toantalyze tlia data and describe lthe cognitive structure of thea groups studied.

specific$

Subjeets were nine A-7 ONs fron tlite Colorado Air National Guard, seven Fighter Lead-in INs, four Fighter
Lin'ad-itt Inotruclor WS0s, and 17 recent UPT Graduates. The CGu each liad In excess of 2000 hours flying tintte.
The IN liad 1200)-49(X) hours, A~ ilta UPT graduates had about 200 hours. Although thea GPs and IN liad
roughtly sittllar tniounts of flying timie, their experietnce differed in% that tlte GPs litad little Instructor experience
whilrte ilaINs liad relatively less operational experience, The WS0s hatl 800-30(M) houro.

Two concepitual sets were, investigated. One, the low-angle istrafe, was related to only a single maneuver. The
other Not dealt Witlti a class of malneuversi tilea split-plane miatteuvers. The stimuitus seels were gene~nted by thte
4.lwitierlttewrN working Withi senior INs at Hollomnan APB, Populations of flight related terms were assetnbled
through interview" Witlti INs at Ilolloman AFB, These were condensed to one set of 30 stimulus items for split-platte
sod :4(1 for st~rafe.

- ~Sulijeerts performed a self-pared rating task in which all pair-wise combinations4 of lthe itenms int eacht set were
rated for Fsitnilarity. Similarity ratings were treated as distiences in conceptual spate. lit addition, ltme 1.11s gave a
ruling of thteir famtiliarity Wilit tlie tertms, This was done to ensure that thea UPT graduates haed at least a mininintal
degroe of famtiliarity with thea terms.

Aitalysesi showed tlite tnore experienced pilots to have conceptual structures that were better developed, mnore
* swophlisticated, and more oconontical tItaon the UPT graduates. The WS(6 were also found to htave conceptual

structures which differed fromt tltose of the piolos.

A pattertn recognition algorilhnt was applied to lthe MIJS solutions attd to ilie raw ratitng data to see if thet
gmtmpsA could his distinguished ol thea basis of their conceptual structures. This program searched for a pattern or



i proltotlype which ltaracleried the conceptual structure of members of a group. The groups were found to have
dlfferenn coneoplual structures, with the mare experienced individuals ahowing a mlightly greater tendency to
cluster about tho group prototype, while lite recent UPT graduate* tended to be more diverse.

Conchaelusion/Recommendatons

I, Pilots do have measurable cognitive structures for remembering and recalling flight related information.

2. Cognitive• otruclurem show meamurable differencew an a funrtion of flyinig oxperience. Experienced pilot,

e*hihlo miore efficient and economical organization of flight related Informnation than do lei experienced pilots.
The WSO alhowed a memory structure that differed from thtat of Lhe pilots.

3. 'rT.h approalh used in the present research con provide a useful tool for lookIng at differenoos in
iidividuall' undetanding of flying tuaksi, Buh a tool may have application both %Pv aaesiving inoiSvlduol

dIfereoncel In the development of conceptual understanding during learning and for l•okiall' ah,. -fetWivenes. of
training programs In conveying critical flight related concepts to students.

Alli
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prototype which characterized the conceptual structure of members of a group. The groups were found to have
different conceplual struciures, with the more exp.ienceid individuals showing a slightly greater tendency to
cluster about the group protolype, while tile rcuent UPT graduates tended to be more diverse.

Coueltisions/Recozmmendations
I. Pilots do have ineasurable cognitive structures for remembering and recalling flight related information.

2. .Cognitive structures show measurable differences as a function of flying experience. Experienced pilots
exhibit imore efficient and economical organization of flight related information than do less experienced pilots.
The WSOs showed a memory structure that differed from that of the pilots.

3. The approach used in the present research can provide a useful iool for looking at differences in
iindividuals' understanding' of flying tasks. Such a tool may have application both for assessing individual
differences in the development of conceptual understanding during learning and for looking at the effectiveness of
training programs in conveying critical flight related concepts to students.

Li_
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INTRODUCTION

In the past decade, experimental psychologists have generated a
considerable body of theory and data concerning the organization and
retrieval of knowledge in human memory. This research area (which has
come to be known as semantic memory) has concentrated largely on the
study of natural categories and their members (e.g., birds, mineral,,
geological formations). One of the first theoretical proposals in the
area was suggested by Collins and Quillian (1969) following the lead
developed by Quillian (1969) in the form of an intelligent, question-
answering computer system.

Two important structural principles were ombodied in the theoret-
ical analysis offered by Collins and Quillian: hierarchical orRaniza-
tion and cognitive economy. The hierarchical principle refers to the
proposal that concepts are stored in memory as nodes in a network with
each node having labeled links to other nodes that repre.ent super-
ordinate concepts. For example, the node representing the concept
"robin" would have a particular kind of link (ISA) to the node
representing the concept "bird." The hierarchical scheme requires
that each concept only be connected to its immediate superordinate and
not to more general concepts (e.g., robin is directly connected to
bird but not to animal). The hierarchy also provides a basis for
inferences about facts not learned directly. If the structure
contains the facts that "an A is a B" and "a B is a C", then it can be
inferred that "an A is a C."

The principle of cognitive economy refers to the way in which
properties of concepts are represented in the memory system, In
particular, properties are stored at the highest possible level of the
hierarchy. This means that properties pertaining to all members ot' a
particular category need to be stored only once with a link to the
node representing the category. For example, the property "ha:i wings"
would be stored with the concept bird rather than with each particular
type of bird. Thus there is an economy of storage. Both principles
are illustrated in the network structure shown in Figure 1.

Collins and Quillian (1969, 1970) presented evidence favoring the
hierarchical theory of human memory structure, They showed that
people were faster in verifying true sentences relating concepts near
in the hierarchy (e.g., A robin is a bird.) compared to sentences
relating more distant concepts (e.g., A robin is an animal.). Simi tar
results were found for' sentences asserting property relations. Those
sentences were also verified more slowly when the noun and the
property were further apart in the hierarchy.

i
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Subsequent research has led to some important qualifications of
the original theory proposed by Collins and Quillian. Conrad (1972)
showed that some of the original support for the idea of cognitive
economy was due to a confounding of associative strength between nouns
and properties. In particular, properties which were near to the
nouns in the hierarchy tended to occur with those nouns more frequent-
ly in the language. When associative strength was controlled, there
was no evidence of a hierarchical, distance effect. Also, the assump-
tion of hierarchical organization has met some difficulties. In
particular, Rips, Shoben, and Smith (1973) have shown that distance in
a logical hierarchy does not always predict response time. For
example, people verify the sentence, "A dog is an animal" faster than
the sentence, "A dog is a mammal." Smith, Shoben, and Rips (1974)
discuss some of the problems associated with the hierarchy model, and
they propose an alternative model using semantic features as the basic
tinit of analysis. Collins and Loftus (1975) present a defense of the
hierarchy model. They also suggest extensions to the model which help
to compensate for some of its failures.

There have been several other proposals concerning memory struc-
tures in addition lo the hierarchical structure proposed by Collins
and Quillian. We have already mentioned the featural analysis pro-
posed by Smith et al. Others have proposed that a multidimensional
spatial representation captures much of the organization of some
conceptual domains. Shepard (1963) and Kruskal (1977) have investi-
gated the applicability of multidimensional spatial representations
for a number of conceptual domains with some encouraging results. It
can be difficult to discover the identity of the underlying dimensions
which limits the value of the analysis in some cases. However, multi-
dimensional scaling (MDS) does provide a metric (distance in multi-
dimensional space) which can be valuable. The present project has
investigated memory structure using the spatial methods developed by
Shepard and Kruskal.

There have also been proposals that constitute generalizations of
the hierarchical model proposed by Collins and Quillian. One such
model, proposed by Collins and Loftus (1975), assumes that concepts
are organized as nodes in a network but the organization of the
network is not necessarily hierarchical. Retrieving information from
such a network requires the "activation" of particular nodes.

A powerful context mechanism in models of memory structure is
termed "spreading activation" (Collins & Quillian, !969; Collins &
Loftus, 1975; Meyer & Schvaneveldt, 1971, 1976; Schvaneveldt & Meyer,
1973; Schvaneveldt, Durso, & Mukherji, 1982). According to spreading
activation theory, the activation of a node in the network leads to a
spread of activation to other, nearby, nodes. Because of the organ-
ization of the network, the nearby nodes are semantically related.
Thus, spreading activation makes related concepts more readily access-
ible once a particular concept has been activated.



While much of the theory concerning structure and process in
semantic memory has been based on network structures, there have been
no empirical methods available to generate networks from data. One
major accomplishment of the present project has been the development
of such a method. The general weighted network (GWN) algorithm uses
the same data as other methods. Thus, the various structural repre-
sentations can be compared using the same data sets.

Development of Conceptual Structures

One approach to the validation of conceptual structures involves
demonstrating an orderly development of the structures in student
pilots as they gain more experience. The structures derived from the
student data will be compared with those derived from instructors to
identify aspects of the conceptual structure which undergo marked
changes with training and aspects that remain relatively stable.

During the past year, we have investigated the development of
spatial representations and of networks of concepts. Of interest is
the extent to which students can be distinguished from instructors on
the basis of their conceptual structures. We have also attempted to
identify specific concepts and relations between concepts which
distinguish instructors from students.

In summary, the present investigation employs several methods
that produce structural descriptions for concepts from split-plane
maneuvers (Table 1) and from the low-angle strafe (Table 2). We have
derived multidimensional spatial representations, cluster analyses
(Johnson, 1967), and network representations for these maneuvers.
Multidimensional spatial representations show the location of each
concept in a multidimensional psychological space where the Euclidean
distance between concepts represents psychological proximity. Cluster
analyses produce a series of groupings of concepts, reflecting under-
lying psychological categories of concepts. Cluster analyses impose a
hierarchical constraint on the groupings such that smaller groups form
a subset of larger groups. In a network representation, each concept
occurs as a node in a network, and psychological distance is repre-
sented by the distance between nodes. Network representations can
reveal several different kinds of organizations including hierarchies,
cycles, and chains of concepts. The validity of these representations
is assessed by various criteria, including consistency within and
between individuals, the development of the representations with
training and experience, and performance in speeded identification
tasks.

-.-



GENERATION OF STIMULUS MATERIALS

A review of training and technical order publications related to
tactical flight operations and tactical aircraft provided a potential
set of stimulus items. One member of the research team was familiar

* with tactical flight operations as an Air Force navigator, and ho was
responsible for the generation of preliminary stimulus sets related to
critical flight information and aircraft systems.

Early in this phase of research, a recent AFHRL technical report
came to our attention. The report (Meyer, Laveson, Pape, & Edwards,
1978) included the identification and detailed task analyses of
selected basic tactical flight maneuvers. Of particular interest wore
the following:

1. The breakdown of tactical operations into two practical cate-
gories, air-to-air and air-to-ground.

2. Results of analyses which identified "highly representative"
maneuvers from each of the above categories,

3. The use of a scenario as a means of collecting data from
experienced airorew members.

Based on the Meyer et al. report, two representative maneuvers
were selected for further investigation, The two maneuvers, low yo yo
and low-angle strafe, representl.ng air-to-air and air-to-ground
categories, :respectively, together with a general list of tactical
aircraft systems, were selected for furthier stimulus generation and
validation efforts.

Interviews were conducted with four instructor pilots from
Holloman AFB. The interviews were conducted informally and involved
examination of general concepts related to air-to-air versus air-to-
ground operations depending on the specialties declared by the inter-
viewees. Conceptual units, words and phrases, were then compiled into
preliminary stimulus lists. Detailed review of the Meyer et al. task
analyses provided additional stimulus items and a basis for elimin-
ating items not directly related to the target maneuvers selected for
further study.

It became apparent that within each selected maneuver, certain
items on the list could be considered assumptions necessary to limit
the scenario to a particular maneuver. Certain others were essential
or central to the maneuver, and, still others, to varying degrees,
were only "related" to the maneuver in a more abstract sense. Accord-
ingly, the preliminary lists were broken down into three subsets based
on best available information. These lists, together with an outline
of aircraft systems, were then ready for validation.

-i -5-
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The validation process consisted of a series of interviews with
individual tactical fighter pilots on a series of visits to Holloman
AFB. The purposes of the project were explained to each pilot who was
then asked to review a list of concepts. The resulting additions,
deletions, and shifts (e.g. from "related" to "essential" subsets)
were iteratively incorporated in succeeding interviews. The 10 inter-
views conducted in this phase resulted in the following:

1. The low yo yo scenario was expanded to include all primary
split-plane maneuvers. Pilot experts made it clear that, even with
multiple scenario-related restrictions, a real world situation could
precipitate any combination of split-plane maneuvers and no single set
of restrictions would evolve into a low yo yo maneuver exclusively.
Since many of the essential concepts established in the list were
common to all split-plane maneuvers, only minor expansion of the
stimulus set was required.

2. The low angle strafe maneuver was kept limited in scope and
could be effectively restricted to the specified maneuver given few
scenario-related assumptions.

3. The aircraft systems list, was trimmed considerably. Pilots
indicated that, while all represented subsystems could be considered
critical in some sense, knowledge about several aircraft systems only
became critical when specific malfunctions occurred in flight.

4. The "basic concepts" subset of each maneuver was refined to
include 30 items consistent with practical experimental manipulation
in the next phases of the project.

5. The "assumptions" subset of each list was restricted to less
than 10 items to provide a manageable scenario description during the
next phases of data collection.

The resulting lists of stimulus items are shown in Tables 1, 2,
and 3.

-6-



Table 1. SCENARIO: SPLIT-PLANE MANEUVERS

Assumptions
OFFENSIVE AGGRESSIVE TALLY HO
SINGLE BANDIT KILL EQUAL OR SIMILAR AIRCRAFT
COMMIT ENGAGED IR MISSILE PARAMETERS

DEFENSIVE TURN (TARGET DENIES MISSILE)

Basio Conoopts
LOW YO YO HIGH YO YO QUARTER PLANE
LAG ROLL BARREL ROLL OVERTAKE
GUNS AIRSPEED ANGLE OFF
0 LOADING CUTOFF RELATIVE ENERGY
6 O'CLOCK SMASH POWER SETTING
SWITCHOLOGY ACCELERATION RADIAL G
HEAT SNAPSHOT VERTICAL MANEUVERING
3-9 LINE EXTENSION WEAPONS PARAMETERS
LAG PURSUIT LIFT VECTOR CORNER VELOCITY
ASPECT ANGLE PURE PURSUIT LEAD PURSUIT

Other Related Conoepts
THREAT DISENGAGE BINGOJOKER SADDLED-UP LOW PK
HIGH PK BURIED NOSE REVERSAL
SHOOTER LOAD PADLOCK
RTB EGG OP TURN
MAX TURN TRAPPED NOSE LINE OF SIGHT RATE
NOSE COUNTER KNOCK-IT-OFF OVER PULL
UNDER PULL SEPARATE SUN
CLOUDS

-7-



Table 2. SCENARIO: LOW ANOLE STRAFE

Assumptions
CONTROLLED RANGE PANEL/TARGET TARGET ACQUISITION
CLEARED SWITCHOLOGY

Basic Conoests
DRIFT AIM OFF POINT DIVE ANGLE
GLIDE PATH FOUL LINE CLOSURE
AIRSPEED RUN-IN LINE ALTITUDE
BANK PIPPER FIXATION WALKING
TRIGGER TRACKING PULL UP
RICOCHET YAW FINAL
BURST RECOVERY BUNT
STABILIZE TRIM FOUL
RANGE PIPPER PLACEMENT FIRE
BULLET IMPACT GUNS AIM POINT

Other Related Conoepts
RETICLE CROSSWIND LEG ROLL IN
ANGLE OF ATTACK MIL CRANKING DOWNWIND LEG
BASE LEG WIRE PRESS
SIGHT PICTURE TRACER SPACING
WINDS REJOIN BEARING
AZIMUTH LAZY PULL TOWER
DOWN-THE-CHUTE DISPERSION COFFIN CORNER
DOUBLE BURST PENDULUM EFFECT EJECTION
ROLLING PULL LONG BURST

-8-



Table 3. ESSENTIAL AIRCRAFT TERMS

FLIGHT-CONTROL SYSTEM STICK
PITCH DAMPER SWITCH FLIGHT-TRIM SWITCH
ADI ALTIMETER
CAS/MACH RUDDER PEDALS
RUDDER TRIM KNOB YAW DAMPER SWITCH
THROTTLES FUEL-QUANTITY INDICATORS
FUEL-FLOW INDICATORS NAVIGATION SYSTEM
COMM RADIO FIRE-CONTROL SYSTEM
RADAR MISSILE MISSILE COMPUTER
GUN COMPUTER OPS CHECKS
HUD CANOPY
EJECTION SYSTEM UHF

"-9-



SIMILARITY-RELATEDNESS RATtNGS

Method

Most scaling procedures for producing structural descriptions of
a set of concepts require some measure of psyrhological distance
between the concepts. Accordingly, we rdeveloped a similarity or
relatedness rating procedure which provided meanures of similarity
between the members of 0ll possible pairs of the basic concepts from
the two selected scenarios (see Tables 1 nnd P).

A program was developed for the TERAK microcomputer to collect
the rating data. The intent was to produce a program that would
essentially allow subjects to perform the task without outside
assistance, Since tests were to be concucted during normal duty
hours, the aim was to establish a method for collecting data that
would impinge on subjects' time as little as possible. Since the
TERAK could be continually available at Holloman APB, subjects were
able to run through our programs whenever they had a few minutes of
free time. The TERAK was programmed to automatically start the
program whenever it was turned on. Posters were prepared with
detailed instructions about starting the TERAK.

Once started, the "1AR presernted instructions for the task on
its video display. The A-.tructions deacribed the nature of similar-
ity or relatedness ratings and gave the details on entering the
ratings into the computer. A scenarlo wss described to provide a
context for rating the terms, and the comple'te set of terms to be
rated was shown to allow subjects to establish some criteria for
rating the pairs of concepts. The rating task itself consisted of
presenting all possible pairs of the 30 basic concepts from one of the
sets of terms. Thus subjects rated the similarity of 435 pairs of
terms during the session. For each pair of terms, the TERAK displayed
the pair of terms to be rated, a rating scale with the numbers 0
through 9, and a bar marker to indicate the rating. Subjects entered
their rating by pressing a number key on the TERAK keyboard. The bar
marker in the display was moved to the position corresponding to the
number entered by the subject to indicate the rating given. Subjects
could change the rating by pressing another number key, and the bar
marker would move to the position corresponding to the new number.
When satisfied with the rating, the subject pressed the SPACE BAB on
the keyboard, and the display changed to show the next pair of items
and to reset the bar marker to the bottom olo the scale. This pro-
cedure was followed until all 435 pairs had be%.n presented. The order
of the pairs was independently randomized for each subject. A rating
session required from 30 to 45 minutes to complete, and the TERAK then
presented a debriefing to the subject explaining the purpose of the
research.

Table 4 summarizes the subjuct groups that were tested with the
rating task. Table 5 shows the flying time for each subject.



Table 4. Summary of' Subject Groups for the Rating Task

Group n Desoription Location

Split-plane Maneuvers

IP 7 Instructor Pilots Holloman AFB

OP 9 Air National Guard Pilots Buokley ANOB

UP 17 Undergraduate Pilots (UPTs) Williams AFB

IW 4 Instruotor Weapons Systems Officers Holloman & Williams

Low Angle Strafe Maneuver

IP 6 Instructor Pilots Holloman AFB

UP 16 Undergraduate Pilots (UPTs) Williams AFB

IW 7 Instructor Weapons Systems Officers Holloman & Williams
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Table 5. Hours of Flying Time for Each Subject

Split-Plane Maneuvers Low Angle Strafe

Subject
Number IP(M) OP(O) UP(U) IW(W) IP(I) UP(U) IW(W)

¶ 2850 3221 182 800 2850 200 800
2 4300 3500 200 950 4300 105 970
3 3300 2100 105 725 1850 200 1500
4 2300 21000 200 3000 1400 188 1100
5 1230 3850 188 4400 175 2100
6 1600 10650 175 2600 200 725
7 4400 4000 200 180 3000
8 4000 180 206
9 2256 206 250

10 250 200

11 200 196
12 196 300
13 300 175
14 175 173
15 173 200
16 200 275
17 275

Note. IP - Instructor Pilots
OP - Air National Ouard Pilots
UP - Undergraduate Pilots (UPTs)
IW - Instructor Weapons Systems Officers

The letters shown in parentheses next to the group labels
are used to designate particular individuals in the group,
e.g., Il represents the first IP listed.
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The portability of the research apparatus permitted collection of
data at several geographically separated locations by different
researchers. National Guard pilots were tested at the Buckley unit,
of the Air National Guard. Instructor pilots and weapons systems
officers were tested at Holloman AFB. Undergraduate Pilot Training
subjects and some weapons systems officers were tested at Williasm,
AFB.

The obtained similarity measures were transformed into measures
of psychological distance by subtracting the ratings from the maximum
possible rating. The resulting numbers reflect distance with the
larger numbers representing greater psychological distance between
concepts.

The rating task provided the data base for much of the work
described in this report. In particular, the ratings were used to
evaluate consistency within and between individuals and within and
between groups. The ratings were also used to produce multidi-
mensional scaling solutions, hierarchioal clusters, networks, and
classification algorithms, The details for each structural analysis
are presented in the appropriate sections.

Since some of the subjects tested were in UPT training, it wen
desireable to determine how familiar they were with the concepts from
the two lists, Accordingly, the UPT subjects rated their familiarity
with the terms on a three point scale. A rating of 1 indicated that
they had no familiarity at all with the concept. A rating of P
indicated that they were familiar with the term but did not use it in
flying. A rating of 3 indicated that the term was used in flying.
Summaries of the familiarity rating data are shown in Tables 6 and 7.
Table 6 shows the familiarity of each of the concepts to the group or
UPTa as a whole. Table 7 shows the familiarity indicated by each or
the UPTs for the set of concepts as a whole.

As can be seen from the tables, the UPTs show a reasonable degree
or frmiliarity with the concepts. Overall, 65% of the responses
indicate at least some familiarity with the split-plane concepts, and
73% of the responses indicate at least some familiarity with the low-
angle strafe concepts. Obviously, students are not as familiar with
the concepts as instructors (who selected the concepts to begin
with). There are a few concepts which are not very familiar, but
overall the students appear to know, or at least know about, most of
the concepts. Also, the late- analyses suggest that theri, ire
systematic differences between UPTs and other groups which are more
likely based on systematic misunderstanding of the concepts by the
UPTs rather than a lack of familiarity. The fact that some of' thi'
analyses show differences between Air National Guard Pilots and
Instructor Pilots suggests that the ability to discriminate between
groups is not solely based on a laok of familiarity in one of the
groups.

-13-
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Table 6. Familiarity of UPTs with Individual Concepts

Split-Plane Maneuvers Low-Angle Strafe

Familiarity Rating Familiarity Rating

Concept I 2 3 Concept 1 2 3

LOW YO YO 10 6 0 DRIFT 0 6 9
HIGH YO YO 8 8 0 AIM OFF POINT 12 2 1
QUARTER PLANE 14 2 0 DIVE ANGLE 1 9 5
LAO ROLL 13 3 0 GLIDE PATH 0 3 12
BARREL ROLL 0 1 15 FOUL LINE 14 1 0
OVERTAKE 0 0 16 CLOSURE 0 5 10
GUNS 1 14 1 AIRSPEED 0 2 13
AIRSPEED 0 0 16 RUN-IN-LINE 1l 1 0
ANGLE OFF 4 8 4 ALTITUDE 0 1 I4
0 LOADING 0 1 15 BANK 0 1 14
CUTOFF 0 0 16 PIPPER FIXATION 7 8 0
RELATIVE ENERGY 0 4 12 WALKING 12 3 0
6 O'CLOCK 0 3 13 TRIGGER 2 13 0
POWER SETTING 0 0 16 TRACKING 1 10 4
SWITCHOLOGY 7 5 4 PULL-UP 3 5 7
ACCELERATION 0 1 15 RICOCHET 6 9 0
RADIAL O 12 3 1 YAW 0 2 13
SMASH 1 1 14 FINAL 2 4 9
HEAT 13 3 0 BURST 3 12 0
SNAPSHOT 13 3 0 RECOVERY 1 8 6
VERTICAL MANEUV 0 2 14 BUNT 14 1 0
3-9 LINE 12 4 0 STABILIZE 2 6 7
WEAPONS PARAMS 4 12 0 TRIM 0 1 14
CORNER VELOCITY 1 8 7 FOUL 14 1 0
LIFT VECTOR 0 4 12 RANGE 1 12 2
EXTENSION 13 3 0 PIPPER PLACEMENT 6 9 0
ASPECT ANGLE 13 3 0 FIRE 1 14 0
LAG PURSUIT 10 4 2 BULLET IMPACT 3 12 0
PURE PURSUIT 9 5 2 GUNS 1 14 0
LEAD PURSUIT 10 4 2 AIM POINT 1 7 7

Total 168 115 197 121 182 147

Peroent 35 24 41 27 40 33

Note. Entries in the table are the number of UPTs giving eaoh rating
to each concept.
1-Totally Unfamiliar
2-Familiar but not used in flying
3-Used in flying
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Table 7. Familiarity of Individual UPTs with All Concepts

Split-Plane Maneuvers Low-Angle Strafe

Familiarity Ratings

UPT 1 2 2
U ' 6 10 ' 1 9 -

U2 12 6 12 8 13 9

U3 12 6 12 19 3 B

U4 15 3 12 4 10 16

U5 12 5 13 6 14 10

U6 4 11 15 6 16 8

U7 7 7 16 6 13 11
U8 10 8 12 6 10 14

U9 13 4 13 - " "

U10 - - - 7 12 11

U11 7 13 10 9 10 11

U12 14 10 6 8 11 11

UI'3 9 9 12 8 11 11

U14 15 3 12 11 8 11

U15 11 6 13 5 25 0

U16 5 8 17 7 12 11

U17 14 6 10

Note. Entries in the table are the number of

oonoepts given each rating by sooh UPT.
1-Totally Unfamiliar
2-Familiar but not used in flying

3-Used in flying

S~-15-

___



Results and Discussion

The first step toward establishing the validity of the rating
data raquires determining tie extent to which different subjects agree
about the ratings. Under the assumption that the cognitive structures
underlying the ratings are shared by people with similar experiences,
agreement in the ratings presumably reflects the shared structures.
Table 8 shows the correlations between the ratings given by each pair
of instructor pilots. Instructor pilots were chosen for this test
since they presumably have an organization of the concepts which is
communicated to the students they are training. In other words,instructors can be expected to have a reasonably well defined

structure. Ccrrelating the ratings they give to the various pairs of
concepts should reflect the extent to which they share a common
structure, as well as the extent to which the ratings succeed in
capturing that common structure.

The correlations between members of a pair of individuals average
about .43 (the average of the off-diagonal entries). Given the large
number of pairs on which these correlations are based, they are all
statistically significant (Critical values of r are approximately .10
for the .05 level, of significance and .13 for the .01 level of
significance). The obtained correlations suggest a tooderate amount of
agreement among the instructor pilots in the ratings assigned to the
435 pairs of basic concepts in each set of material.

The values on the main diagonals (underlined) in the matricies
in Table 8 show reliability estimates from pilots who were retested
after an interval of 6 to 8 months. With an interval that long
between the original test and the retest, the second set of ratings
presumably reflects the individual's cognitive structure rather than
memory for the ratings given on the initial test. The reliability
coeff'icients average about .62 which indicates that approximately 38%
of the variance in the ratings is stable over time within an indiv-
idual. The average correlation between individuals cf .43 leads to
the conclusion that agreement between individuals accounts for about
18% of the variance in the ratings. Putting these two facts together
leads to the conclusion that individuals share about 47% of the
consistent variance in the ratings (18%/38%). These values suggest
that the agreerent between individuals is not only statistically
significant, but is sufficiently large to be of practical significance
as well. For present purposes, the rating data have sufficient
reliability and the agreement between individuals is sufficiently high
to allow further structural analyses of these data.
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Table 8

Inter-Individual Correlation Matrix on Rating Scores

11 through 17 are individual instruotor pilots

Split-Plane Manuevers

I1 12 13 14 15 16 17

II - .35 .47 .45 .42 .58 .43
12 .35 - .41 .41 .47 .38 .32
13 .47 .41 - .49 .43 .42 .43
14 .45 .41 .49 - .41 .43 .41
15 .42 .47 .43 .41 - .42 .41
16 .58 .38 .42 .43 .42 - .37
17 .43 .32 .43 .41 .41 .37 .67

Low-Angle Strafe Maneuver

II 12 13 14 I5 16

Ii - .49 .39 .57 .49 .41
12 .49 - .40 .50 .42 .39
13 .39 .40 .54 .47 .36 .31
14 .57 .50 .47 - .53 .45
15 .49 .42 .36 .53 .71 .42
16 .41 .39 .31 .45 M2 .5_4
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HIERARCHICAL, CLUSTERING

Figures 2 through 5 show the results of a hierarchical clustering
analysis of the basic concepts from the two sets of concepts. Figure
2 shows the groupings of concepts for the split plane maneuvers for
the instructor pilots, and Figure 3 shows the same analysis for the
undergraduate pilots. The clusters found in the data from the split-
plane concepts for both instructor pilots and undergraduate pilots are
shown in Table 9. In several of the methods used to compare students
and instructors, there are areas of agreement and disag&oeement in the
corccptual structures. For example, instructors and students agree
about the grouping of the concepts GUNS and SNAPSHOT. However,
students group HI YO YO with LO YO YO, and the instructors do not make
such a grouping. Perusal of Table 9 will. reveal several other
examples.

Similar analysis of the data from the concepts related to the low-
angle strafe are shown in the next two figures. Figure 4 shows the
groupings of the concepts for the instructor pilots, and Figure 5
shows the results for the undergraduate pilots,

In general, the hierarchical clustering analysis yields sensible
groupings of the concepts, especially for the instructor pilots.
These results generally confirm the validity of the procedures we have
used. The cluster analysis does not. -eadily yield information
permitting more detailed analysis than the concept clusters
themselves. The multidimensional scaling procedure and the network
analyris have proven to be more useful in pushing the analysis of the
differences between students and instructors to a more detailed
level. Next, we turn to those analyses.
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Table 9. Major Clusters of Split-Plane Concepts

Group I Oroup 2- Group 3 Group 4 Group 9

Instructor Pilots

LO YO YO HI YO YO 0 LOADING GUNS ANGLE OFF
OVERTAKE QTR PLANE VERT MANEUV SNAPSHOT PURE PURSUIT
AIRSPEED LAG ROLL RADIAL 0 CUTOFF 6 O'CLOCK
SMASH BARREL ROLL LIFT VECTOR LEAD FUR HEAT
REL ENEROY LAO PURSUIT 3-9 LINE SWITCHOLOOT
PWR SETTING ASPECT ANOL WEAPNS PARMS
ACCEL
CORNER VEL
EXTENSION

Undergraduate Pilots

LO YO YO GUNS SWITCHOLOGY OVERTAKE 0 LOADING
HI YO YO SNAPSHOT PURE PUR CORNER VEL
LIFT VECTOR WEAPNS PARMS AIRSPEED
QTR PLANE 6 O'CLOCK REL ENERGY
ANGLE OFF HEAT SMASH
3-9 LINE PWR SETTING
ASPECT ANOL ACCEL
EXTENSION CUTOFF
LAO PURSUIT LEAD PUR
LAG ROLL VERT MANEUV
BARREL ROLL
RADIAL G
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MULTIDIMENSIONAL SCALTNO

Structures. The results of' two-dimensional scaling solutions are
shown in Figures 6 through 9. Figure 6 shows the spatial layout of
the concepts for IPs for concepts f'rom split-plane maneuvers. Figure
7 shows the layout generated for the undergraduate pilots for the same
set of concepts. The spatial layouts ror the low-angle strafe
concepts are shown in Figures 8 and q for the Instructor pilots and
the undergraduate pilots, respectively. In these figures, the
position of the concept is what ts being represented. The horizontal
position represents the location of the concept on one dimension, and
the vertical position represents the location of the concept on a
second dimension.

Since the figures only represent the two-dimensional scaling
solutions, they do not capture the complete structures since more
dimensions are required to represent the total complexity of these
sets of concepts. Unfortunately, nolutionn with more than two
dimensions are difficult to represent. However, the two-dimensional
representations in the figures do reveal some interesting aspects of
the conceptual structures. Comparint, the instructors with the under-
graduates (Figures 6 and 7), for example, reveals some similarities in
the relative locations of the concepts SWITCHOLOOY, HEAT, GUNS, and
WEAPONS PARAMETERS in the two structures. There are clear differences
in the relative locations of other concepts. Students have HI YO YO
and L.0 YO XO located near one another while these two concepts are
much further apart in the structure developed from the instructor
data. We will return to a detailed analyis of the differences
between experienced and inexperienced pilots in some of the later
analyses.

The structures we used for further analyses were based on five
dimensions for the split-plane maneuvers and four dimensions for the
low-angle strafe. The dimen:sionality of each set was chosen by
plotting the variance in the instructor data which is accounted for by
the variance in the instructor structures. The point at which the
function began to level off' was ielected as the appropriate dimension-
ality for that set of concepts. Interestingly, this procedure leads
to a more complex structure for the split-plane maneuvers than for the
low-angle strafe. Such a difference would be expected on the basis of
the difference in complexity for the two sets of concepts.

Multidimensional soaling solutions have two properties that are
of considerable interest. First, they provide a dimensional organ-
ization that can reveal interesting global structures in the data.
Second, they yield a metric (distranco betwemn concepts in multi-
dimensional space) which has some useful applications. Next, we turn
to a discussion of these properties in the data from the instructor
pilots.
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Dimensions in Multidimensional SIaoe. Some or the major dim'n-
s ions have been identified for the spatial layout of' the concepts for
instructors. The split-plane concepts have two dimensions associated
with temporal factors and one dimension which distinguishes particular
maneuvers. The first temporal dimension identifies the general time
dimension within a scenario leading to split-plane maneuvers, In
Figure 6, this dimension is the main horizontal dimension ordered from
left to right. The concepts on the extreme left (SWITCHOLOGY, HP.AT,
and ANOLE OFF) refer to events or considerations that occur early in
the temporal sequence. Moving to the right, we encounter concepts
referring to events and considerations occurring later in the
sequence. The second temporal dimension represents the ordering or
concept& in a standard training sequence which instructors and
students frequently follow in practicing the maneuvers. This
dimension occurs as the third dimension in the solution and is not
shown in Figure 6. The vertical dimension in Figure 6 has been
identified as a contrast between lead pursuit and lag pursuit with lag
pursuit and the associated maneuvers near the top and lead pursuit and
LOW YO YO near the bottom.

The low angle strafe maneuver also provided a temporal order
dimension as the first dimension in the solution. Again, this
dimension occurs as the first dimonsion in the solution, and it
reflects the order in which the concepts would occur to pilots in
executing the low angle strafe. Interestingly, this dimension appears
to reflect the psychological ordering of the concepts rather than the
order in which the events occur in physical time. Apparently, pilots
must consider several factors early in time, before they actually
occur, in order to be able to concentrate on critical factors such am
aiming and firing. The MDS dimension appears to reflect this order of
consideration. This dimension appears as the horizontal dimension in
Figure 8 where the ordering of the concepts in time occurs from right
to left.

These dimension are summarized in Table 10. Apparently the
temporal order dimension is a powerful one in the organization of
these concepts for pilots. This dimension shows up consistently.
ie dimensional organization of the concepts is interesting, and it.

lends some support to the validity of the analytic p-ocedures
underlying the MDS solutions. However, the conclusions drawn so far
are rather general and of limited utility. More fine-grained analyses
of the structures are required to lead to conclusions that may by
usefully applied. The metric-based analyses will take us a step in
the direction of applicable findings.
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Table 10. Identity of the Dimensions in Multidimensional Space

Dimension Identity Concept Set

1 Temporal Order of Consideration Split-plane

2 Lead versus Lag Pursuit Split-plane

3 Events in a Training Sequence Split-plane

I Temporal Order of Consideration Low Angle Strafe
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The MDS Metric. Table 11 shows the average correlations on the
split-plane concepts both between people in the same group and between
individuals in different groups. Table 12 shows a similar analysis
for the low-angle strafe concepts. Several aspects of the data in
these two tables are noteworthy.

First note that the least experienced individuals (students)
consistently show lower correlations both within their own group and
with the other groups. Overall the correlations involving students
are about .23 compared to an average for the other groups of about
.33. Instructor pilots coniistently show the most consistency with
members of their own group. This is perhaps not surprising since
instructors not only know about the execution of the maneuvers, but
they also are required to organize what they know sn they can
communicate it to their students. Overall the correlations suggest
that the more experienced individuals agree more among themselves than
they agree with the students.

On the other hand, the students do show a reasonable amount of
agreement a,nong themselves. Apparently, whatever it is that they
think about the concepts being rated, they share the same knowledge to
some extent.

Finally, note that the correlations based on the distances
derived from the multidimensional scaling are slightly but consist-
ently higher than the correlations based on the original ratings.
While this dif'ference is not large, it does suggest that the MDS
distances capture at least as much structural information as do the
original ratings. As we will see later, the MDS solutions apparently
do contain more useful information. One possible explanation for this
finding is that thn MDS procedure involves the simultaneous consid-
eration of all or the ratings to determine the best relative locations
for the concepts. The original ratings, however, only require
subjects to consider the concepts two-at-a-time. Apparently, the
forced consistency from MDS results in an increase, rather than a
loss, or information. The pattern-recognition analysis (which
follows) dramatically demonstrates the superiority of the MDS metric
over the original ratings.
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Table 11

Average Correlations Within Groups and Between Groups

Split-Plane Maneuvers

Ratin Scores

Group

IP GP UP IW Average

IP .42 .35 .20 .39 .34

OP .35 .36 .24 .31 .32

UP .20 .24 .31 .18 .23

IW .39 .31 .18 .38 .32

Distances in Multidimensional

Group

IP OP UP IW Average

IP .45 .37 .22 .40 .36

OP V3? .39 .211 .34 .34

UP .22 .24 .29 .20 .24

IW .40 .34 .20 .38 .33
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Table 12

Average Correlations Within Oroups and Between Groups

Low-Angle Strafe Maneuver

Patina Soores

Group

IP UP IW Average

IP .44 .20 .39 .34

UP .20 .32 .24 .25

IW .39 .24 .36 .33

Distances in Multidimensional S.2je,

Group

IP UP IW Average

IP .49 .22 .43 .38

UP .22 .32 .25 .26

IW .43 .25 .39 .36

-3
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PATTERN RECOGNITION ANALYSIS OF CONCEPTUAL STRUCTURES

Conceptual structures provide relational and organizational
information about the concepts of a particular domain. In comparing
structures across groups of individuals it is possible to define
qualitative differences between groups. This type of a comparison is
important for delineating how different groups view a particular set
of concepts. It is also informative to express differences quantita-
tively. The purpose of this phase of the project is to define a
technique for quantitatively evaluating individual and group differ-
enoes in conceptual structures of critical flight information.

The objective in this phase of the project is the development of
methods for classifying an individual as a member of a particular
group based on the individual's conceptual structure. For instance,
given someone's conceptual structure for the split-plane maneuvers, is
it possible to identify that person as an IP? In addition to classif-
ication, the analysis also provides information about the degree to
which each individual is associated with each group. The analysis to
be described applies the principles ard techniques of pattern
recognition.

Pattern recognition is an area of artificial intelligence (AI)
that is generally concerned with deciding whether an unknown object Is
a member of a particular class of objects. AT applications often
involve computer identification of visual objects, although numerous
other uses exist. The only prerequisite for the application of
pattern recognition techniques is the necessity to quantify the
objects to be recognized. This is accomplished by first identifying a
list of features or attributes that best represent the objects and
then numerically coding these features. Such a method allows for
abstract as well as physical objects to be analyzed. In addition to
categorizing objects am members or a particular class, pattern
recognition principles also supply information about class and
individual differences.

Method

Two types of patterns were formed for each individual tested.
One pattern was generated from the conceptual structures derived from
a multidimensional scaling (MDS) analysis. Each MDS solution yields a
metric formed by taking the distance between each pair of concepts in
a multidimensional space. The MDS pattern was created by viewing the
attributes of the pattern as values of the metric. This allowed the
pattern to preserve the structural properties inherent in the MDS
solution. A second pattern was generated by considering the similar-
ity rating given for each pair of concepts as a feature of the
pattern. Since this pattern was simply the individual similarity
ratings, it lacked the structural properties imposed by scaling
techniques. Both methods resulted in patterns with 435 features,
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Before the specific analyses are described, a brief overview of
the theory of pattern recognition will be presented. Nilsson (1965)
provides a general dimoussion nf the principles to he used in the
project. Objects to be categorized nre represented by a lint of
feature values in the form of n pattern vector X. The ith elemrnt of
the vector X represents' the value of the ith feature. Since feature
values are in the form of real numbers, pattern vectors can be
considered as points in a multidimansional space where each dimension
represents an attribute of the otJe'-ot. The Ao~l is to develop
decision surfaces that will partition the pattern .ipace into regions
containing only those points or patterns belonging to a particular
class of patterns.

One way of producing decision surfaces is to use linear disc-im-
inant functions to decide class membership. This approach amsumes
that a weighted linear combination of the feature values can determine
how a pattern should be classified. A linear discriminant function
has the form g(X):WIXI+W2X2+...+WdXd+Wd+l, where WW1,W2,.,.,Wd is R
vector of weights. Such a function specifies the equation of a line
when du2, the equation of a pla,,e when dm3 and the equation of a
hyperplane when d03. Classes that can be properly separated with
linear discriminant functions are known as linearly separable.

Two methods for generating linear dliscriminant functions will be
used. The irst method, known as a minimum-distance classifier, is
simple to apply but works only under restricted conditions. With this
procedure, a prototype point representing the central tendency of a
class of patterns is constructed for each pattern class. Often the
prototype point of a class is simply the average of the feature values
of all patterns belonging to the class. A minimum-distance classifier
computes the distances between each pattern to be categorized and each
prototype point and places the pattern into that class associated with
the nearest prototype. In the case of two classes, the decision
surface separating the patterns is the perpendicular bisector of a
line connecting the two prototype points. This approach works well
when the patterns of esoh class cluster tightly around their
respective prototype points, and the class clusters are woll
separated.

A second approach to pattern classification employs a training
algorithm that alters a linear discrifninant function until it correct-
ly classifies the patterns in a training set. The training procedure
alters the function by successive adjustments tc the weight ventor W
which in effect changes the orientation and position of the decision
surface. In the case of two linearly separable classes, a wriht.
vector exists that will produce a discriminant function that returnn a
positive value for all patterns from the first class and a negative
value for all patterns from the second class. During the training
procedure, if the function returns a correct response for a pnttern
from the training set, no adjustment Is made to the weight vector. iT
the function returns a negative response for a tr.ining pattern from
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the first class, the weight vector in corrected by adding a fraction
of the pattern vector that was Incorr'atly classifled to the weight
vector. This produces a new weight. vector W':W + cX, where c is a
positive number that controls the exte'nt or the adjustment and is
known as the correction increment. It c ia large enough, the new
weight vector will correctly classify the training )oAttern. If the
disoriminant function incorrectly r'uturns a positive value for a
training pattern from the second rLmt, :. '-.t'rn r the pattern is
subtracted from the weight vector W'=W - "X.

The training procedure consists of presenting the training
patterns one at a time and adjus-,ttng the weight vector when necess-
ary. The patterns may be presented 'Yi any order as long as each
pattern is tried. The procedure In tlrminated no noon as the weight
vector correctly classifies all putterrn in th" training set. Several
iterations through the training met may he necessary before a solution
is found. The weight vector may be InitI.alkird t- any convenient set
of values including random values.

The first analysis consisted of' rpplytlig a minimum-distance
classifier to all pairs of group:i for, both the split-plane and low-
angle strafe maneuvers. Prototype poiirto for al) groups and decision
surfaces for separating all pairn( of groups were computed. In each
application of the miminum-distanno cLh:;ifrLeo., all members of the two
groups were used. This providend information ibout both group and
individual differences. The distnnco from each individual to a
decision surface and from each indlvldu:31 to the group prototypes were
computed along with the distancem between group prototypes.

The second analysis involved computing a decision surface that
separated a training set consisting of a limited number of members
from two groups and then applying the, deiet.ion ,surface to the ,,ssain-
ing members of the groups. Decision nurfaces were computed with a
training algorithm if a minimum-distance classifier did not separate
the training sets. Weight vector.s were initialized to the weights
produced by a minimum-distance clansoification of the individuals in
the limited training set. This minimized the number of iterations
needed to produce a solution when the minimum distance classifier
failed and also kept the final weight veftor as close to the minimum-
distance decision surface as possible. The first analysis showed that
the classes clustered tightly indicating that when the minimum-
distance weights failed to separate the classes, a solution close to
these weights was likely. A small correction Increment (ou.01) was
used to produce minimal change from the minimum-distanee weights.

For each pair of groups, a training set. of a particular size was
randomly chosen, and a decision surface was computed to separate the
members of the training set into their respective classes. In the
came where a minimum-distance classifier correctly separated the
members of the training sets, the resulting dincrlmlirant function was
then applied to the remaining member, of the two gi )ups. If no
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solution was found with the minimum-distance classifier, the training
algorithm was applied to the subset of selected group members to
generate a decision surface which correctly classified all individuals
in the training set. The resulting discriminant function was then
applied to the individuals who were not included in the training set.
This procedure was repeated 100 times for each training set size. The
trainirg sets consisted of equal numbers of individuals from each
group. The whole procedure was iterated with successively larger
training sets until the size of the smaller group vas reached.

A final analysis evaluated group differences on a qualitative
level. Each of the weights in a discriminant function corresponds to
a pair of concepts in the stimulus set. Once a discriminant function
that separates two groups is derived, it is possible to identify those
concept pairs that contribute the 'most to discriminating between
groups. The most discriminating pairs of concepts correspond to the
weights in the weight vector with the greatest absolute values. Large
positive weights are associated with pairs of concepts that the first
group views as more related than the second group, and large negative
weights are associated with pairs of concepts that the second group
views as more related than the first group. Weight vectors derived
from a minimum-distance classification of the MDS patterns were used
for comparing groups.

Results and Discussion

The major finding was that pattern recognition techniques can be
used to discriminate classes of flying personnel based on their
conceptual structures of critical flight information. Also signif-
icant was the result that patterns represented by distances in an MDS
solution produced better group separation than patterns, based on
rating scores.

The first analysis showed that a minimum-distance classifier
applied to each pair of groups resulted in well separated groups with
only a few erroneous classifications. Table 13 gives the number of
members from each group who were classified into each of the groups.
Incorrect classifications between two groups indicate that the
decision surface generated for those groups does not accurately
separate all members. Table 13 shows the classifications for both
types of patterns (ratings and MDS) and both sets of stimulus
materials (split-plane maneuvers and the low-angle strafe maneuver).

When the minimum-distance classifier was applied to ratihg dsta,
a small number of misclassifications occurred. For the split-plane
maneuvers, all of the misclassifications occurred between IPs and
UPTs. The two IPs who were classified as GPs under the ratings were
on the GP side of the decision surface separating iPs and GPs. This
means that their conceptual structures resembled more closely those of
GPs than IPs. Two IPs were also classified as IWSOs, and we will see
.ihortly that these are the same two IPs that were classified vs GPs.
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Table 13

Clasaifioations Based on Group Separation

with a Minimum-Distance Classifier

Split-Plane Mnneuvers

Ratings Distances in MDS

IP uP IWSO UrT IP OP IWSO UPT

Ips classified as 3 2 2 0 7 0 0 0

OP& classified as 0 9 0 0 0 9 0 0

IWSOu olaasified as 0 0 4 0 0 0 4 0

UPT& clasaified as 0 4 1 12 0 0 0 17

Low-Angle Strafe

Ratings Distanoes in MDS

IP IWSO UPT IP IWSO UPT

IP& claaasifed as 6 0 0 6 0 0

1W1O3 classified as 0 6 1 0 7 0

UPTs classified as 0 3 13 0 0 16
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These two individuals view the split-plane maneuvers somewhat differ-
ently from the other IPs. Table 13 also shows that four of the UPTs
have conceptual structures that resemble more closely a GP structure
than a UPT structure. An important point is that these misclassi-
f'ications occur even though the individuals misclassified contributed
to defining their group prototype.

The number of misclassif ications occurring between two groups
reflects both the distance between the groups in the pattern space and
also the tightness with which individuals cluster around their respect-
ive prototypes. IPs and UPTs appear to be very distinct classes since
no IPs were classified as UPTs and no UPTs were classified as IPs for
either maneuver. Considering the simplicity of the decision surfaces
produced by the minimum-distance approach, the overall results
indicate quite distinct classes of individuals.

Table 13 also provides the, results of the minimum-distance class-
ifier using the patterns from an MDS solution. Here we find perfect
separation of all classes. Apparently the structural information
supplied by the MDS procedure maximizes the differences between
classes. This finding helps to validate the claim that the MDS
technique extracts important structural information from similarity
ratings. Additional support for this claim comes from the higher
correlations found for individuals within classes using MDS distances
in comparison to rating scores (see Tables 11 and 12).

Although the number of misclassifications reflects between-group
similarity, a more direct measure is the distance between group
prototypes. Shorter distances suggest greater similarity between
group conceptual structures. Table 14 shows these distances for all
pairs of groups along with a ranking of the distances. Given the
superior performance of the MDS patterns, the ranking based on the MDS
patterns should be more valid than that of the ratings. Table 14
shows that the most similar classes are IPs and GPs followed closely
by IPs and IWSOs. Thus, it is not surprising that the two IPs who
were misclassified as GPs were also misclassified as IWSOs. IPs and
UPTs are seen to be two of the most dissimilar groups which is also
consistent with the finding that no misclassifications occur between
these two groups..

Sin e each individual is represented as a point in the pattern
space, it is possible to provide distances that reflect how similar
the individual is to each group. Two measures are of particular
interest, the distance from an individual to a decision sur~face and
from an individual to the group prototype points. The distance
between an individual and the decision surface separating that
individual's group from another group reflects the degree to which
that individual belongs to the group. Large distances suggest strong
identification with the group. The closer the individual is to the
decision surface the more similar that person is to the other group.
Negative distances indicate that the person is on the wrong side of'
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Table 14

Distances Between Group Prototypes

for All Pairs of Groups

Split-Plane Maneuvers

"Ratini.. Rank Distances in MDS Bank

IP-OP 33.36 2 81.30 1

IP-IWSO 38.02 4 82.96 2

IP-UPT 39.14 5 106.49 5

OP-IWSO 30.72 1 92.56 'j

OP-UPT 37.91 3 91431 3

IWSO-UPT 49.41 6 111,96 6

Low-Angle Strafe

Ratlnits Rank Distanoces in Mt3 Rank

IP-IWSO 25.95 1 76.32 1

IP-UPT 38.97 3 120.83 3

IWSO-UPT 36.10 2 95.87 2
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the decision surface and is therefore misclassified. The distance
between an individual and a class prototype reveals how strongly that
individual represents the average features of that class. The dist-
ances from a point in the pattern space to the decision surface and
from the point t0 its prototype do not necessarily correspond because,
for example, a point on the edge of the pattern space may be close to
the decision surface but far from its prototype.

Tables 15 through 23 give the distances from an individual to
both decision surfaces and group prototypes for all individuals. The
rating patterns for IPs in Table 15 show that 12 and 17 were tha two
IPs who were incorrectly classified as GPs and IWSOs. It is interest-
ing to note that 17 is in fact a GP. This individual was placed in
the IP class when the only classes available were IPs and IWSC)s and
then was never reclassified. It is also informative to examine the
number of hours of flying time for both 12 and 17 from Table 5 in
comparison to the other IPs. Both have considerably more hours than
do the other IPs. Their fl;`ng time is actually much closer to the
GPs' flying time.

An examination of the MDS patterns from Table. 15 shows that
although all IUs were correctly classified, 12 and 17 have the
shortest distances to the decision surface separating IPs and GPs.
Generally, there is good correspondence between distances for the
ratings and the MDS patterns. When disagreement occurs, it must be
attributed to the additional information supplied by MDS. Again, MDS
should provide the clearer picture. By rank ordering the distances
under the GP column, it is possible to order the IPs in terms of their
resemblance to GPs. Similar orderings can be obtained for IPs in
comparison to IWSOs and UPTs. The distances from IPs to group
prototypes under each class can also be ordered. As seen in Table 15,
13 most closely resembles the prototypical IP on the basis of concept-
ual structures of the split-plane maneuvers. Similar information can
be obtained for the members of the other classes.

The UPTs are particularly interesting since they are currently
undergoing training to develop expertise in flying maneuvers. From the
individual distances for the UPTs in Tables 18 and 19, it is apparent
that some of the UPTs view the split-plane maneuvers more like the
experts than do the other UPTs. For instance, 07 was classified both
as a GP and a IWSO in addition to being the closest UPT to the IP
decision surface. Although no misclassifications occurred with the
MDS patterns the same trends occur. This individual appears to be
approaching the conceptual structure of the experts more quickly than
are the other UPTs.



Table 15

Separation of IPs from Other Groups

Base on a Minimum-Distance Classifier

Split-Plane Maneuvers
I! through 17 are 1ndivJdUal IPs

Rating Soorer

Distanoes from Distances from
Decision Surface Group Prototypes

OP IWSO UPT IF' oP IWSo UPT

11 25.20 34.25 21.86 U13.58 59.811 67.11 60.09
12 -4.13 -6.50 1,43 44.14 40.91 38.13 56.18
13 18.18 18.45 26.25 41.30 54.03 55.76 61.33
14 49.29 56.82 14.40 68.90 89.64 95.23 76.65
15 9.12 9.53 15.99 37.U5 44.51 45.80 51.24
If 32.30 31,17 34.25 51.28 69.19 70.71 72.88
17 -13.22 -10.64 8.83 45.33 34.25 35.29 52.40

Average from group prototypes: LjL 56.05 58.29 61.54

Distances in Multidimensional Space

Distances Fr=m.. Distanoei from

Decision Surface Group Prototypes
OP IWSo UPT IP OP IWS. UPT

Il 34.52 56.93 52.72 105.71 129.57 143.60 149.60
12 32.22 25.98 39.83 119.56 139.76 136.40 150.87
13 44.09 42.61 72.90 101.72 132.35 131.97 160.76
14 52.87 54.32 59.18 108.04 142.37 143.82 155,73
15 39.83 30.86 42.47 109.18 135.64 130.54 14.474
16 55.05 43.91 59.03 114.96 148.89 143.18 160.51
17 25.97 35.76 45.89 111.97 129.46 135.91 149.31

Average from group prototypest 110.16 136.86 137.92 153.07

Each row of the table represents one IP. Decision surfaces
were computed for separating 1Pa from the three remaining groups.
The distance from each IP to a decision surface is shown along
with the distance from each IP to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misolassified.
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Table 16

Separrntion or' i , n from Other Groups
Beased on a Mininium-Iintance Cla.•infler

SpI it-PnMnneuvevrs
C1 tlnrougt G9 are individuai Gi's

Hating Snore,%

Distanoes from . i.t'nces fro'm
Decision Surface Group Prototypes

TP IWSO UPT IP OP IWSO. UPT

01 17.5' 7.39 24.20 49.20 35.39 3 11.30 55.56
02 7.68 20.24 10.16 111.82 38.69 52.35 L17.61
03 6.53 10.55 13.06 42.36 36.85 44.79 48,45
04 11.04 26.09 5.41 53.44 116.04 61.01 50.29
05 6.58 13.31 2.10 38.36 32.13 43.01 34,52
06 35,58 15.86 35.12 67.96 47.38 56.74 70.05
07 13.87 16.06 24.43 54.69 45.45 55.25 62.59
08 30.94 25.96 29.69 65.11 46,64 61.40 66.52
09 20.40 2.82 26.37 52.49 37.33 39.59 58.24

Average from group prototypes: 52.05 40.66 50.60 54,87

Distanoes in Multidimensional Space

Distances from .istances from
Decision Surface Group Prototypes

IP IWSO UP1 t 0. TWSO UPT

01 29.85 34.75 44.53 135.06 115.70 1110.78 146.69
02 44.88 146.119 5L4,97 1LI5.52 117,81 1M.9'; 151,.65
03 24.01 30.21 57.31 128.40 112,71 1311.8, " 1.82
04 50.97 55.73 29.34 118.58 117.4.? 11,9.76 13,9.36
05 38.91 34.92 33.20 151.24 128.64 151.70 15i0.i",
06 58,17 65.18 48.27 157.95 124,.45 166.00 155,.89
07 28.65 43.15 1111.93 13P.55 113.63 144.56 14I5.3.1
08 70.97 88.28 43.82 177.94 141.85 190.96 167.70
09 19.45 17.83 54.50 131.07 118.39 131.59 154.32

Average from group prototypes: 145.37 121.18 '151.74 151,73

Each row o' the table represents one GP. Deoision eurraocna
were computed for separating OPs from the throe remaining groups.
The distance from each aP to a decision murfane is shown along
with the distance from each OP to each group prototype. Negntive
distances indioate that the individual is on the wrong side of the
decision surface and therefore misoln.'sif'ed.
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Table 17

Separation of IWSOs from Other
Groups Based on a Minimum-Distance Classifier

Split-Plane Maneuvers
WI through W4 are individual IWSOs

Rating Scores

Distances from Distances from
Decision Surface Group Prototypes

IP GFP UPT IP GP IWSO UPT

W1 36.26 17.89 37.30 65.72 51.59 39.52 72.45
W2 30.06 17.24 31.51 60.47 49.31 37.03 66.98
W3 5.65 8.84 10.80 42.09 43.43 36.64 49.09
W4 4.08 17.74 19.21 49.73 56.89 46.50 63.73

Average from group prototypes: 54.50 50.31 39.L2 63.06

Distances in Multidimensional Space

Distances from Distances from
Decision Surface Group Prototypes

IP GP UPT IP GP IWSO UPT

Wi 53.90 47.18 63.20 143.22 142.50 107.56 160.38
W2 74.84 73.47 60.53 16'7.57 171.07 125.15 170.93
W3 21.36 31%93 113.14 119.50 129.02 103.61 142.8!
W4 15.83 32.55 57.05 119.52 132.98 107.97 156.30

Average from group prototypes: 137.45 143.89 111.07 157.61

Each row of the table represents one IWSO. Decision surfaces
were computed for separating IWSOs from the three remaining groups.
The distance from each IWSO to a decision surface is shown along
with the distance from each IWSO to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 18

Separation of UPTs from Other Groups
nased on a Minimum-Distance Classifier

Split-Plane Maneuvers
U1 through U17 are individual UPTs

Rating Scores

Distances from Distances from
Decision Surface Group Prototypes

IP oP IWSO IP oP IWSO UPT

U1 14.95 -0.45 2.55 66.51 56.73 59.20 57.04
U2 17.07 -3.03 7.52 66.44 53-.37 61.81 55.48
U3 11.21 11.70 19.37 45.58 45.68 55.80 34.64
U4 19.47 26.11 31.13 56.04 59.96 68.51 40.20
U5 25.03 35.90 39.89 66.31 71.82 79.87 49.37
U6 21.72 29.88 36.71 75.16 78.82 87.04 62.84
U7 10.37 -4.57 -0.98 58.09 47.08 49.66 50.63
U8 14-76 8.92 15.01 52.97 48.23 55.98 40.63
U9 27.37 36.00 42.89 72.52 76.45 85.76 55.83
U1O 16.28 -0.54 4.99 62.92 51.42 56.37 51.82
U11 23.58 37.16 43.73 68.84 75.56 84.94 53.79
U12 21.06 23.97 28.12 56.58 58.o5 65.81 39.40
U13 27.13 28.26 32.67 75.48 75.60 82.47 59.78
U14 24.64 35.48 39.20 62.25 68.08 76.28 44.11
U15 15.21 0.86 9.46 69.80 61.21 67.95 60.68
U16 11.41 16.99 23.14 60.07 63.27 70.73 52.10
U17 31.46 39.46 44.62 91.67 94.51 101.74 77.08

Average from group prototypes: 65.13 63.87 71.17 52.08

Each row of the table represents one UPT. Deocision surfaces
were computed for separating UPTs from the three remaining g'zups.

The distance from each UPT to a decision surface is shown along
with the distance from each UPT to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 19

Separation of UPTs from Other Groups
Based on a Minimum-Distance Classifier

Split-Plane Maneuvers
U1 through U17 are irdividual UPTs

Distances in Multidimensional Space

Distances from Distances frow
Decision Surface Group Prototypes

'P oP IWs0 Ip OP IWso uPT

Ul 61.23 57.37 61.95 181.34 174.20 183.69 140.96
U2 66.10 52.62 75.00 181.13 168.42 188.55 136.96
U3 43.82 35.19 52.22 160.65 151.39 167.88 128.42
U4 62.19 55.60 63.03 189.15 180.86 191.49 150.1n
U5 63.05 63.00 57.49 182.09 176.80 180.63 140.5ý
U6 38.62 26.44 37.63 168.59 158,24 169.23 142.17
U7 36.98 23.21 24.98 165.60 154.27 158.60 139.86
U8 49.62 46.08 61.96 170.14 163.75 179.65 135.64
U9 57.85 56.07 63.02 164.17 157.78 169.60 121.06
U1O 67.88 42.93 60.85 177.25 157.56 174.96 130.33
U11 64.6! 44.46 61.10 179.92 163.57 179.77 136.51
U12 43.15 47.75 45.83 171.88 170.55 175.02 142.72
U13 57.82 48.31 52.08 172.08 161.68 170.24 131.61
U14 53.54 60.08 69.74 166.32 165.07 178.59 127.59
U15 50.68 38.96 64.92 169.43 158.27 180.20 133.92
U16 34.'>' 21.5? 37.45 165.15 1511.59 168.38 141.30
U17 51.97 56.49 62.43 172.49 170.36 180.79 136.77

Average from group prototypes: 172.79 163.96 176.31 136.27

Each row of the table represetits one UPT. Decision surfaces
were computed for separating UPTs from the three remaining groups.
The distance from each UPT to a decision surface is shown along
with the distance from each UPT to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 20

Separation of IPs from Other Groups
Based on a Minimum-Distance Classifier

Low-Angle Strafe
II through 16 are individual IPs

Rating Scores

Distances from Distances from
Decision Surface Group Prototypes
IWSO UPT IP IWSO UPT

I1 26.30 20.51 43.13 56.92 58.81
12 3.24 14.30 32.23 311.75 46.41
13 20.65 10,73 54.67 63.72 61.84
14 8.41 17.113 28.48 35.32 46.58
I5 1.32 21.32 41.67 42.49 58.30
16 17.62 32.61 56.23 63.85 72.52

Average from group prototypes: 42.7 49.51 57.41

Distances in Multidimensional Space

Distances from Distances from
Decision Surface Group Prototypes

IWSO UPT IP IWSO UPT

I1 54.02 70.32 103.18 137.45 166.25
12 36.05 62.14 106.81 130.04 162.56
13 15.82 33.90 119.01 128.75 149.51
14 35.29 70.55 97.38 121.94 162.89
15 57.26 69.51 134.06 163.44 186.46
16 30.45 56.07 119.50 137.63 166.82

Average from group prototypes: 113.32 136.54 165.75

Each row of the table represents one IP. Decision surfaces
were computed for separating iPs from the three remaining groups.
The distance from each IP to a decision surface is shown along
with the distance from each IP to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 21

Separation of IWSOs from Other Groups
Based on a Minimum-Distance Classifier

Low-Angle Strafe
WI through W7 are individual IWSOs

Rating Scores

Distances from Distances from
"aeoision Surface Group Prototypes

IP UPT IP IWSO UPT

Wl 22.16 36.12 60.20 49.74 71.28
W2 15.65 14.42 45.41 35.36 47.86
W3 9.81 25.51 42.04 35.47 55.68
W4 12.39 17.99 54.68 48.45 60.38
W5 7.51 -17.61 75.48 72.85 63.53
W6 7.49 15.64 39.53 34.26 47.99
W7 15.81 34.25 53.30 44.95 67.03

Average from group prototypes: 52.95 45,87 59.11

Distances in Multidimensional Space

Distances from Distances from
Decision Surface Group Prototypes

IP UPT IP IWSO UPT

Wi 27.63 58.49 129.55 112.10 155.23
W2 56.30 44.06 145.20 111.75 145.51
W3 31.49 68.82 129.03 108.83 159.41
W4 31.98 40.32 139.63 120.89 150.21
WS 69.28 31.11 193.33 163.71 181.48
W6 19.65 43.06 124.96 112.32 145.27
W7 30.80 59.11 132.40 113.27 156.47

Average from group prototypes: 142.01 120.41 156.23

Each row of the table represents one IWSO. Decision surfaces
were computed for separating IWSOSs from the three remaining groups.
The distance from each IWSO to a decision surface is shown along
with the distance from each IWSO to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 22

Separation of UPTs from Other Groups
Based on a Minimum-Distanoe Classifier

Low-Angle Strafe
U1 through U16 are individual UPTs

Rating Soores

Distances from Distances from
Decision Surfaoce Group Prototypes

IP IWSO IP IWSO UPT

U1 7.36 -1.72 51.93 44.71 46.08
U2 11.60 4.56 49.68 43.51 39.55
U3 29.15 35.96 65.94 68.36 45.57
U4 27.22 27.41 67.99 66.93 50.01
U5 16.95 4.60 82.66 76.44 74.24
U6 7.05 -4.04 54.49 46.13 49.19
U7 12.70 2.31 58.80 51.32 49.67
Us 31.54 40.76 77.06 80.14 58.99
U9 7.28 -2.56 54.49 47.09 49.01
U1O 28.63 44.02 78.89 84.68 63.19
Ull 20.44 22.39 55.11 55.33 38.00
U12 11.19 7.93 67.47 65.21 60.66
U13 18.53 19.68 57.72 57.51 43.44
U14 15.22 8.03 69.84 65.35 60.75
U15 27.89 39.58 73.30 77.83 56.57
U16 39.01 39.88 91.78 90.89 73.37

Average from group prototypes: 66.07 63.84.

Each row of the table represents one UPT. Decision surfaces
were computed for separating UPTe from the three remaining groups.
The distance from each UPT to a decision surface is shown along
with the distance from each UPT to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misolassified.
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Table 23

Separation of UPTs from Other Groups
Based on a Minimum-Distance Classifier

Low-Angle Strafe
U1 through U16 are individual UPTs

Distances in Multidimensionn1 Space

Distances from Distances from
Decision Surface Group Prototypes

IP IW3O IP IWSO UPT

U1 44.98 32.21 179.23 166.14 145.78
U2 61.68 49.43 184.30 169.72 138.07
U3 79.67 66.81 190.52 173.83 130.57
U4 62.93 56.42 194.63 183.83 150.57
U5 58.39 37.43 184.78 165.56 141.54
U6 69.89 62.82 188.00 175.60 135.84
U? 66.20 59.78 193.22 181.99 146.07
U8 68.56 53.61 173.44 155.19 116.25
U9 63.69 52.99 180.27 165.98 130.78

UIO 58.86 49.00 168.78 154.67 119.43
U11 67.67 55.88 201.38 187.66 155.57
U12 19.66 15.18 165.18 159.77 150.11
U13 65.83 62.59 184.99 175.07 135.33
U14 49.09 41.74 169.20 158.09 129.48
U15 55.38 37.84 183.86 166.98 142.91
U16 74.16 54.82 180.42 159.49 120.9C

Average from group prototypes: 182.64 168.72 136.83

Each row of the table represents one UPT. Decision surfaces
were computed for separating UPTa from the three remaining groups.
The distance from each UPT to a deoision surface is shown along
with the distance from each UPT to eaoh group prototype. Negative
distancem indioate that the individual in on the wrong tide of the
decision surface and therefore misolassified.
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As mentioned previously, class separation depends on both the
distance between group prototypes and the clo.eness with which mpmbers
cluster around their group prototype. Tables 15 throngh ;:'3 pLv, a
measure or" class nlustering in the form of the avernpe dijtance from
ýhe class prototype to each clns.. member. Shorter distanaes suppst.
more homogeneous cInssps with grenter consistency In the individunl
conceptual structures. The average distance from the individual to
their own group prototype is the v.Rlue underlined in the tables, ror
both maneuvers, the IPs cluster most tightly while UPTa are the most
variable. This Is reasonable considering that IPs follow standard
procedures for presenting the maneuvers and have probably devel oped
similar ways of' thinking about them. UPTs on the other hand are mtlll
loarnizii the material and have different views about how these
concepts are related.

All of the classification results reported so far have come from
applying discriminant funotions to members of classes from which the
disoriminant functions were originally derived. Although this provides
useful information about class and individual differences, it is not a
direct test of the ability of discriminant functions to categorize new
members of known classes. The second analysis involved generating a
discriminant function on the basin of a limited training set from two
classes and then using the function to place new and unknown members
into one of the two classes.

The results of the classifications are given in Tables 24 and 25
for the split-plane maneuvers and Table P6 tfor the low-angle strafe
maneuver. The tables give the total number of individuals for which a
classification was attempted, followed by the percentage of those
correctly classified and the probability of randomly classifyinA at
least this number. Since 100 different randomly chosen training sets
were used for each training set size, the number of classifications
attempted is always 100 times the number of remaining members in the
two classes.

The classification of unknown members was quite succesf'ui. 'ritble
24 shows that with only one member each from the IPs and OPs on whloh
to base a decision surface, 798 out or 1400 remaining iPs and G(Ps wrr'
classified correctly. Performance was even better for MD3 patterns
where 949 of the 1400 individuals were correctly classmifed. Thes.9
results are more impressive if we consider that two of" the seven IPs
resemble OPs. In general, classification improves as the distance
between classes in the pattern space increases. With only two members
each from the IPs and UPTs, it is possible to classify correctly the'
remaining 20 members 95 percent of the time. Table 26 shows that the
classification was poorest for XPs and IWSOs with the low an;Oe strafn
maneuver. In Table 14 the distances between group prototypes ,Qhow
that IPs and IWSOs are the closest pair nf groups for both rntn•ings And
distances in MDS.
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Classification generally improves also an the size of the train-
ing set increases. This is expected since the discriminant function
is derived from a larger more representative sample. Exceptions
sometimes occur when a few members itn one class strongly resemble
members of the other claas. In this case, when the training set size
is small, the chances of using one of' the deviant, class members to
derive the disoriminant function is also smnll. This reaults in
generally good performance over the 100 trials. But as the training
set size Increases, the chances of banPng t.he dtsoriminpint function on
one of the deviant members increases. The result is increased
difficulty in oleasifying the remaining members. Related to this is a
factor that influences the probability measure. As the number of
classifications attempted declines, higher percentages of correct
classifiation are needed to maintain pr'evioum probability levels.

Disoriminant functions based upon the MDS patterns resulted in
better classification of unknown members compared to the rating
patterns. The average percentage of correct classifications for the
MDS patterns was significantly greater than the average for the
ratings, t(106)u5.95, p4,001. As mentioned previously, this superior
performance can be attributed to the additional structural information
supplied by MDS.

It is important to note that the pattern reoognit ion analysis has
been performed on a limited number of' individuals. Groups have ranged
from 14 to 17 members. Traditional applications of pattern recognition
often use large numbers of patterns to Insure that decision surfaces
reflect general class distinctions. The success seen in the current
analysis with a limited number of patterns suggests considerable
potential for future applications. Decision surfaces based on large
representative groups may prove to be even more eft'ective in class-
ifying pilots on the basis of conceptual struetures.
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Table 24

Classirication of Groups Members
on the Basis of Limited Training Sets

Split-Plane Maneuvers

Training Ratings Distances in MDS
_es .ka #Classified %Correct Prob* Correct Prob_

IPs OPO
1 1 1400 57 .001 68 .001
2 2 1200 67 .001 77 ,001
3 3 1000 67 .001 82 .001
4 4 800 68 .001 84 .001
5 5 600 62 .001 87 ,001
6 6 400 52 na 87 .001
7 7 200 f1 n 84 .001
Total 50 6o3 .001 79 .001

Training Ratings Distances in MDS
Set Size KClassified lCorrect Prob_ $Correct Prob*

IPa IWSOs
1 1 900 53 .05 56 .001
2 2 700 57 .001 60 .001
3 3 500 61 .001 63 .001
"4 4 0l0 5 .001 0 .001
Total 2400 58 .001 .001

Training Ratings Distances in MDS
Set Size #Classified %Correct Prob_ %Correot Pi-ob.zF8- -O'Ra

2 2 2000 77 .o00' 95 .001
3 3 1800 78 .001 98 .001
4 4 1600 83 .001 100 .001
5 5 1400 89 .001 100 .001
6 6 1200 91 .001 100 .001
7 7 100 o_6 .001 100 .001

Total 1120080 .001 94 .001

SProbability of randomly classifying at least the number of
individuals correctly classified (nannot signiricant).
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Table 25

C11a4aiioation of Grciipe Member•i
on the Basis of' Limil.ed 'aining Sets

Split.-Plane Maneuvers

Training Ratings Distances in HD
Set § *C fGlasaified %Correot Prob* hCorreot Probi

1 1 1100 58 .001 62 .001
2 2 900 64 .001 71 .001
3 3 700 65 .001 76 .001
4 4 IO • .o...01 7 .001
Total 320061 .001 70 .001

Training Ratings DistnnceA in MDS

§A Vi Classified %Correat Probtm  %orrept Prob#

1 1 P400 62 .001 IN .001
2 2 2200 70 .001 89 .001
3 3 2000 74 .001 93 .001
4 4 1800 76 .001 95 .001
5 5 1600 76 .001 95 .001
6 6 1400 76 .0o 95 .001
7 7 1200 73 .001 95 .001
8 8 1000 73 .001 96 .001
9 9 72 .001 , o_•
Total A0 72 .001 92 .001

TriigRating" Distances in MDS

*l j Classified ICorrot Pro 1 Ioro

1 1 1900 68 .001 76 .001
2 2 1700 81 .001 93 .001
3 3 1500 81 .001 94 .001

Total 1.001,.001

I Probability of randomly classifying at esaj the number of
individuals correctly olassified (naunot significant).
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Table 26

Classifioation of Groups Members
on the Basis of Limited Training Sets

Low-Angle Strafe

Training Ratings Distanoes in MDS
Set Size #Classified %Correot Prob* lCorreot Probfm

IPS IWSO0
1 1 1100 49 no 56 .001
2 2 900 43 na 54 .01
3 3 700 45 no 53 no
4 4 500 47 no 55 .05
5 5 300 43 no 53 ns
6 6 100 6l no 6 n_
Total 3n .00

"Training Ratings Distanoes in MDS
MD11" #Clasuified %Correct Probt %Correot Prob.

Ipm W
1 1 2000 59 .001 84 .001
2 2 1800 72 .001 96 .001
3 3 1600 73 .001 96 .001
4 4 1400 81 .001 97 .001
5 5 1200 79 .001 97 .001
6 6 1000 0 .001 .001
Total 9000 73 .001 94 .001

Training Ratings Distances in MDS
Set Size #Classified %Correot Prob_ lCorreot Prob*IWBOs UPr. -

1 1 2100 58 .001 69 .001
2 2 1900 62 .001 88 .001
3 3 1700 65 .001 91 .001
4 4 1500 67 .001 92 .001
5 5 1300 67 .001 93 .001
6 6 1100 60 .001 93 .001
7 7 ...22 4 001 87 .001
Total 10500 Ho-.001 TT .001

* Probability of randomly classifying at least the number of
individuals correotly olasiftied (nannotis-ijitifoant).
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The final analysis on the qualitative differences between groups
examined the distance between each pair of concepts in a group's
conceptual structure. The result was a list of the concept pairs that
were most different in the conceptual structures for two groups. The
list is separated into concept pairs that one group views as more
related than the other group. Later in this report, a detailed anal-
yasi of IP and UPT conceptual structures is given based on a general
weighted network. To allow a comparison of' the upcoming analysis with
the results of the pattern recognition techniques, Table 27 shows
those split-plane concepts that lead to the most disagreement between
XPe and UPTs.

The major goal of this phase of the project has been to demon-
strate both the feasibility and utility or applying the techniques and
principles of pattern recognition to conceptual structures of critical
flight information. The general finding in that pattern recognition
techniques appear to be sensitive enough to detect subtle dirferences
between both groups and individuals. In addition, these differences
often seem to have "real-world" significance. Many of the findings
may have relevance to selection and training. As discussed later in
this r'port, a beginning pilot's knowledge of' split-plane maneuvers
begins as a fairly disorganized set of relations. As the person
undergoes training and gains experience in these maneuvers the
conceptual structures should begin to evolve into structures that more
closely resemble those of experienced pilots. The results of this
part of the project suggest the possibility or tapping into this
developmental process and classifying a person at a particular stage
of conceptual development,
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Table 27

The Most Disoriminable Pairs of Concepts

for Distinguishing IPa from UPTs

Split-Plane Maneuvers

IPs View These Pairs as More Related Than UPTs

LOW C o Yo - CUTOFF HIGH Yo o --:-QITgk PLANE I
HIGH YO YO - BARREL ROLL HIGH YO YO - RADIAL G
QUARTER PLANE - RELATIVE ENERGY BARREL ROLL - ASPECT ANGLE
QUARTER PLANE - VERTICAL MANEUVERING GUNS - CUTOFF
GUNS - LEAD PURSUIT ANGLE OFF - 6 O'CLOCK
CUTOFF - SNAPSHOT 6 O'CLOCK - HEAT
POWER SETTING - EXTENSION ACCELERATION - EXTENSION
SWITCHOLOGY - WEAPONS PARAMETERS RADIAL a - LIFT VECTOR
RADIAL 0 - VERTICAL MA4EUVERING SMASH - EXTENSION
HEAT - WEAPONS PARA -'JRBS SNAPSHOT - LEAD PURSUIT

UP'rn View These Pairs as More Related Than 1P0

LOW YO 1O - HISH YO TO OVERTAKE - PURE PUSUIT
AIRSPEED - PURE PURSUIT ANGLE OFF - CUTOFF
ANGLE OFF - 3.9 LINE CUTOFF - 6 O'CLOCK
CUTOFF - CORNER VELUCITY CUTOFF - LAG PURSUIT
6 O'CLOCK - SNAPSHOT 6 O'CLOCK - LEAD PURSUIT
POWER SETTING - LEAD PURSUIT ACCELERATION - LIFT VECTOR
SMASH - HEAT SMASH - PURE PURSUIT
HEAT - LEAD PURSUIT SNAPSHOT - LAO PURSIJIT
3-9 LINE - EXTENSION LAG PURSUIT - LEAD PURSUIT
CORNER VELOCITY - LEAD PURSUIT PURE PURSUIT LEAD PURSUIT
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GENERAL WEIGHTED NETWORKS

An understanding of the underlying conceptual structure of criti-
cal flight information can be advanced by determining the global
relationships among the concepts as we have done using conventional
scaling techniques (e.g., ?4DS). However, representing local structure
(i.e., detailed relationships) among critical flight concepts is
quintessential to a full appreciation of fighter pilots' conceptual-
data bases. Theoretically, a general weighted network can accomplish
this goal.

A general weighted network is a configuration in which concepts
are depicted by nodes and relationships are depicted by links
connecting the nodes. The links are ass~igned a value or weight that
reflects the strength of the relationship between the nodes. The
value reflects the distance from one node to another along that link;
the shorter the link, the closer the nodes. The network is general in
that constraints are not placed on the possible relations that can be
represented. For example, the hierarchical constraint found in
cluster analysis is not placed on general weighted networks. With
this constraint removed, the representation becomes more sensitive to
local relations other than hierarchical ones but hierarchical
relations may 3till be present (Christofides, 1975; Fillembaum &
Rapaport, 1971).

Networks have formed the, basis of research in a number of areas
of cognitive science. Several psychological and artificial intell-
igence models of conceptual structure are based on suth networks.
Work in graph theory is centrally con-erned with propertieL c7 general
networks. While important theretical and formal work nas been
conducted on these structures, no methods have been available to
produce networks from empirically obtained measures -of psychological
distance. We developed a network algorithm which produces general
weighted networks (GWN) to apply to the rating data. Recently we
discovered another algorithm developed by Hutchinson (1981). Here we
will discuss our algorithm, GWN, and its application.

The central- problem in constructing a network from psychological
distance data is to determine which links to place in the network.
Fcr N concepts, the possible number of links lies between N-i links
for a minimally connected network (MCN) and (N x (N-1))/2 links for
all possible connections.

ZWJ.: "acides whether to add a link Yjs '*r esting network for any
two concepts, bay, (UNS and CUTOFF, Lr, che following way. The empir-
ical distance between the two concepts is compared with the shortest
chain (sequence of links) already exi.itlng in the network connecting
GUNS and CUTOFF. Such a chain might be GUNS-LEAD PURSUIT-CUTOFF, or
mn-- general'-;, GUNS-X1-X2- . . .- Xn-CUTOFF, where the Xs represent

.,g nodes of the chain. GWN assumes that for a person to
decide on the relatedness of GUNS And CIUTOFF search is directed along
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the network from each concept. The searches will intersect, at some
concept Xi, along the shortest chain connecting the two concepts. The
distance before this intersection occurs is taken by GWN as the short-
est distance between the concepts. If the empirical distance is
longer than the shortest distance currently in the network, then GWN
does not add a link since the new link would be redundant with the
shortest chain. If the empirical distance is shorter than the
evaluated distance of the shortest current chain, then GWN adds a link
connecting GUNS and CUTOFF because the psychological distance is
smaller than would be allowed by the existing network. By iterating
this procedure starting with the smallest empirical distance and
proceeding with all distances in order of their magnitude, GWN adds
links to the network and can create networks of varying complexity.

MCN: The Skeletal Structure. For any set of N concepts, those

concepts can be formed into a network (more specifically a tree) with
N-I links. In such a network or tree, each concept is reachable from
every other concept. Each node, not yet connected to the network, is
connected by finding the shortest link between it and an element of
the network. This solution minimizes the average distance from all
concepts Xi to all concepts Xj for N-i. links. The MCN has a special
status in that the MCN links will appear, by definition, in all
connected networks regardless of how elaborate. In a sense, the MCN
represents the backbone of the network and may have a special status
in the conceptual representation. The MCN produced by GWN turns out
to be the shortest spanning subtree proposed by Kruskal (1956).

MEN: The Integral Connections. The MEN is the minimal network
that Includes more links than- the simple tree structure of the MCN.
The MEN allows additional interconnections among concepts that produce
the most efficient connections with a minimal number of links. Unlike
the MCN, the MEN does not have a logical bound on the number of links
that can be found in the network. Also unlike the MCN, cycles can be
introduced into the representation., Cycles are of particular interest
in that they are chains that begin and terminate on the same node.

We analyzed the psychological distance data from UPTs, IPs, GPs,
and IWSOs for split-plane maneuvers and the low-angle strafe maneuver
using GWN. The resulting networks for IPs and UPTs~appear in Figures
10 to 16. The nodes in the networks are located on the page according
to the two-dimensional multidimensional scaling solutions for the
IPs. One of the problems of representing the networks is.@rranging
the nodes. Using the MDS -tolution solves that problem andihas the
advantage of depicting both dimensional information and network
.nformatA!n iri th- same repr-ýsentaticn. T'iie MDS solution for the IPs
Is used for all net-workis to lp•titpte comparisons between IP and UPT
networks. in the figure.T, khe O.•s are represented by solid lines and
the dotted lines represent the additional links added in the MEN
solutions.
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The network derived from the student data is oonsiderably miore
complex than the IP network. The elaborated student network has 51
links compared to 40 for the instructor network. Apparently, the
instructors have a bett~r organized structure for these concepts; at
least it is more elegant. Surprisingly, the OP network was even more
complex than the UPT network. Perhaps the necessity of communicating
the concepts to students contributes to the simplicity of the instruct-
ors' organization.

We will analyze, in depth, the network of split-plane concepts
for the IPs and then will make comparisons across networks. The IP
network was chosen for several reasons: a) The network contains
several theoretical highlights of networks, b) The network is the
representation of an expert and is therefore of practioal importance,
a) it is similar to the other group of proressional pilots (i.e. OGP),
d) the I~s have direct communication with the UPTs, and e) the IPs
produced the most elegant structure, which will simplify discussion
considerably.

Split Pjlan Network for Instructor Pilots. We analyzed the
empirical distance data for the 30 SPLIT PLANE concepts usind OWN.
OWN produced the MCN shown in Figure 10 for the instructor pilots.
The network is composed of 29 links with an average link length of
10,4 and a standard deviation of 7. The shortest link in between OUNS
and SNAPSHOT (1 unit) and the longest links are LAO ROLL-ASPECT ANGLE
and HEAT-PURE PURSUIT (26 units). A great deal of structure is
apparent even in the skeletal configuration of the MON. The MCN fot
these data is far from the simple structures in which one concept
links to the remaining 29 concepts or in which each concept links tn
two other concepts forming a straight-line chain. Rather there are
several concepts that link to multiple concepts (OUNS, HEAT, ASPECr
ANGLE, VERTICAL MANEUVERING, ACCELERATION, SMASH, AIRSPEED).

When OWN elaborates the MCN to form the MEN, 11 additional links
are added, making s total of 40 links, with an average link length of
14.5, standard deviation of 10.5, and maximum link length of 44 units
(AIRSPEED-PURE PURSUIT). Figure 11 shows the MEN solution with the

MCN links as solid lines and the additional 11 links as dotted lines.
The additional links seem to integrate the overall network by connect-
ing concepts closely allied with flight to concepts closely allied
with weapons. Some of these connections are indirect (e.g., QUARTER
PLANE to LAO PURSUIT) while others are quite direct (e.g., 0 LOADING
to WEAPONS PARAMETERS). The three new links from QUARTER PLANE
certainly help interconnect the overall network and, in addition, mmko
QUARTER PLANE a central concept in the network. Note also that only
four concepts are terminal (i.e., connect to only one other concept):
HI YO YO, LO YO YO, 6 O'CLOCK, and CORNER VELOCITY.
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Another very important form of integration produced by the
additional links of the MEN is the establishment of cyoles. Cycles
are ohains or links through the network that allow [ return to the
starting point without baoktracking (i.e., without returning over the
same link). Recall that with the MCN cenfiguration of 29 links,
cycles were not possible. The addition of the 11 links in the MEN
produced nine minimum distance cycles. Cycles can be round for each
nonterminal node in the network. The terminal nodes obviously cannot
be in cycles since there is only one ,ntry point t-o the concept.

Viewing the nine cycles in Figure 12 gives a better picture of
the structure present in the MEN. In prinoiple there could be 26
minimum cycles in the MEN, one for each non-terminal concept. However,
only nine unique minimum cycles are present in the MEN indicating that
several concepts share the same cycle. The shortest cycle is only 20
units long and is used by five concepts as the minimum cycle. The
longest cycle is 127 units long and is the minimum cycle for only one
concept (i.e., PURE PURSUIT),

Members of the same cycle may have a psychological relationship
among themselves that is not found between concepts from different
cycles. For example, the three shortest cycles are of particular
interest, not only because they are the moat compact, but also because
each member of the cycle uses that oycle as the shortest route through
the network and back. These cycles appear to form meaningful
organizational units:

(AIRSPEED-SMASH-POWER SETTINa-EXTENSION-ACCELERATION)

(OUNS-SWITCHOLOOY-HEAT-WEAPONS PAHAWTITRS)

(QUARTER PLANE-VERTICAL MANEUVERING-
BARREL ROLL-ASPECT ANOLE-3/g LINE)

Another means of identifying substructures within the MEN is the
formation of conceptual assemblies. Conceptual assemblies are formed
by finding the smallest number of concepts that dominate all the other
concepts in the network. In other words, from this set of dominating
concepts (DCs) all other concepts can be reached by traversing one
link. Such a set is referred to in graph theory as externally
stable. The problem of finding such a set is analogous to determining
the number and locations of, say, army posts to guard oities (nodes)
oonnected by major highways (links) or hospitals to servios
neighborhoods connected by streets. Often several such sets satisfy
the requirements of an externally stable set. In forming assemblies,
we placed the additional restriction that the set be an close as
possible to internally stable. An internally stable set is a set of
concepts with no shared links. Thus, we attempted to find the set of
DCs that had a link with every other concept in the network but with
no links to other DCs.
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The DCs for this network were GUNS, HEAT, QUARTER PLANE, ACCEL-
ERATION, SMASH, CORNER VELOCITY, RADIAL G, CUTOFF, and ASPECT ANGLE.
Assemblies are composed of the DC and all concepts that it dominates.
For example, the GUNS assembly contains GUNS, SWITCHOLOGY, WEAPONS
PARAMETERS, SNAPSHOT, and LEAD PURSUIT. Just as cycles partition the
MEN into a small number of comprehensible subnetworks (i.e., nine) so
do assemblies break down the large amount of data represented in the
network into a smaller number of meaningful units, in this case nine.

The network of split-plane concepts for the instructor pilots
highlights a number of local relationships that are not apparent in
the more traditional scaling techniques that we have used. The
networks themselves, MCN and MEN, reduce a huge amount of data in the
form of an N x N distance matrix to a much smaller set of data. These
networks can be reduced still further ,by isolating minimum cycles or
DC assemblies. An understanding of the local relationships among
concepts or among cycles or assemblies makes it possible to compare
experienced pilots with those training to become pilots. With other
techniques, say MDS, only gross global comparisons can be made between
the groups. With the network representation, and with the pattern
classifier discussed elsewhere in this report, individual concepts can
be examined and the extent to which the organization is the same for
experienced and novice pilots can be determined. Further, novice
pilots may differ from experienced pilots either because the novices
are missing critical links: for a particular concept (underdefined
concepts) or because they have additional organizational links that
the more experienced pilots do not have (overdefined concepts).

Comparison of Novice and Expert Pilots using GWN. We used the
GWN algorithm to isolate those concepts and relations that distinguish
expert fighter pilots from novices. These concepts and relations fall
into two categories: (a) those that experts have that the novices do
not and (b) those that novices have that experts do not. The under-
graduate pilots served as the novice group, and the instructor and
guard pilots were the experts.

In the organization of any set of concepts, there are a r-umber of
idiosyncratic relations in the network of any individual person or
group of people. In order to avoid these idiosyncracies, the study
focused on the group networks for expert and novice fighter pilots.
We were interested in comparing the network derived from the UPT data
against the representation of critical flight information.

Critical flight information was defined as the segmeii's of the
MEN that were shared by both groups of experts,i.e., the links con-
tained in the MEN of both the IPs and the GPs. If the student network
does not have a link found in both expert networks, the student may be
missing a piece of critical flight information. Similarly, if the
student has a link that is found neither in the IP network nor in the
GP network, then the student may have a misconception about the
relation between the linked concepts.
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Critical flight network and assemblies. GWN found the MEN for
the IPs and GPs. The intersection of these MENs formed the critical
links of the expert pilots. As can be seen in Figure 16, this led to
a disconnected network composed of three connected components and
three concepts that did not have any critical links. These three
concepts were connected to the IP and GP networks differently and thus
do not produce any critical links. These concepts are good examples
of the role of idiosyncratic information in the networks.

For each connected component, the DCs and accompanying assemblies
were identified. Note that there were no critical cycles so a cycle
analysis was not done. Table 28 lists the DCs and accompanying assem-
blies for each connected component. If a DC was also a terminal con-
cept, we included that concept within the larger assembly for ease of
exposition. The DCs for the critical network were: GUNS, CUTOFF, VERT-
ICAL MANEUVERING, AIRSPEED, RELATIVE ENERGY, LAG ROLL, RADIAL G, 3-9
LINE. The Vertical Maneuvering Connected Component is partitioned
into a Guns Subassembly, Angle Off subassembly, Vertical Maneuvering
subassembly, and an Airspeed subassembly. In the Guns Subassembly,
CUTOFF was also a DC as was RELATIVE ENERGY in the Airspeed Sub-
assembly. The Lag Roll Subassembly forms with LAG ROLL as the center
and RADIAL G and 3-9 LINE as terminal DCs. The Heat Component and
Acceleration Component have only two concepts each and thus are not
reducible to subassemblies. There is considerable similarity between
the DCs and assemblies found for the IPs earlier and the critical DCs
and assemblies found in this analysis.

The critical links in the assemblies are underlined. The three
columns next to each link indicate whether the MEN for each of the
three groups of pilots contained that link. For example, within the
Guns Subassembly for the concept LEAD PURSUIT we find three links.
Two of the links are critical and shared by the IPs and GPs (GUNS and
CUTOFF), and one of the links is noncritical and held by only the
students (OVERTAKE). A perusal of the table shows that some links are
possessed by only one group, some links are shared by UPTs and IPs or
by UPTs and GPs or by IPs and GPs (critical), and some links are
shared by all (critical links held by the students).

-70-



Table 28

Assemblies for the Split-Plane Concepts
K1:Y:

The table (which appears on the following several pares) depict.
linkm connected to concepts aocording to OWN solutions for student
pilots, instructor pilots, and national guard pilots. Minimal elab-
orated networks were used for the students and guards, while an elab-
orated network with 51 links was used for the instructors in order to
equate number of direct concept-to-concept links.

In the left-hand column, elements of the network are listed, The
next column contains the elements that are linked to the elements
listed iii the first column. The X's indicate which pilot groups have
that link.

Untierlined concepto and corresponding X's represent critical
links, A critical link is one that is in the network of both the
inst"uctora and guards.

ASSEMBLIES used orittcal links and were formed in the following
ways:

1) A disconneoted network was formed from the critical likks and
nodes.

2) Each connected component was labelled by its graph theoretic
median (or if no relative median could be uniquely determined, one
wam chosen). This led to four connected components (i.e., VERTICAL
MANEUVERING, LAO ROLL, HEAT, ACCELERATION) and three independent
concepts (i.e., BARREL ROLL, OVERTAKE, LOW YO YO).

3) The minimal externally stable sets of maximally dominating
concepts (MDC) were determined for each connected component and the
set that was most internally stable was used to form oubsaembl Les o,"
the connected components.
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(Table 28 continued)

VERTICAL MANEUVERING CONNECTED COMPONENT

GUNS SUBASSEMBLY
UPTs IPs GPs

GUNS (MDC) SWITCHOLOCY X X X
SNAPSHOT X X
WEAPONS PARAMETERS X
LEAD PURSUIT X X

6 OtCLOCK X

SWITCHOLOGY GUNS X x X
HEAT X

SNAPSHOT GUNS X X
(shared by ANGLE OFF X

angle off 3-9 LINE X
subassembly) BARREL ROLL X

ASPECT ANGLE X
0 LOADING X
OVERTAKE X

WEAPONS PARAMETERS GUNS xX X
EXTENSION X
ASPECT ANGLE X X
LAG ROLL X
ANGLE OF' X X
RADIAL G X
HEAT X X_.
G LOADING X
6 O'CLOCK X
HEAT ASSEMBLY X X

LEAD PURSUIT GUNS X X
CUTOFF X X
OVERTAKE X X

CUTOFF (MDC) LEAD PURSUIT X X
-T--9 L'INE X

ASPECT ANGLE X X
OVERTAKE X X
RELATIVE ENERGY X
ANGLE OFF X
LO YO YO X
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(Table 28 continued)

VERTICAL MANEUVERING SUBASSEMBLY
UPTs IPs GPs

VERTICAL
MANEUVERING (MDC) HI YO YO X X X

(rherad by LIFT VFCTOP x X x

airsveed QUA6Tý FWH~ Lj..4 x
subassembly) AIRSPEED x

BARREL ROLL X X
RELATIVE ENERGY X

3-9 LINE X

LAG ROLL X

LAG ROLL xSSEMBLY X x x

HI YO YC1 VERTICAL, MANEUVERING x x

LO YO YO
3-9 LINE X

ASPECT ANGLE X x

QUARTER PLANE X

BARREL ROLL x

LIFT VECTOR VERTICAL MANEUVERING A x x
QUARTER PLANE X

O LOADING X X

RADIAL 0 X

LAG ROLL ASSEMBLY (0) x x

QUARTER PLANE VERTICAL MANEUVERING x X

(shared by ANGLE OFF X X

angle off 3-9 LINE x X

subassembly) LIFT VECTOR X

EXTENSION X

ASPECT ANGLE X x

LAG PURSUIT X X

LO YD 10 X
HI YO YO X

RADIAL G x
6 O'CLOCK X

LAG ROLL ASSEMBLY (3-9) x x
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(Table 28 continued)
UPTs IPs OPO

AIRSPEED SUBASSEMBLY
AIRSPEED (MDC) SMASH X X X
(shared by CORNER VELOCITY X X X

vertical PURE PURSUIT 7 -

maneuver VERTICAL MANEUVERING X X

subassembly) POWER SETTING x X
EXTENSION X -
OVERTAKE X X
ACCELERATION X
LO YO YO X
ACCELERATION ASSEMBLY X X

SMASH AIRSPEED X X X
RELATIVE ENERGY X X
HEAT 7
ACCELERATION X X
OVERTAKE X
POWER SETTING X
EXTENSION X
0 LOADING X
ACCELERATION ASSEMBLY x X

CORNER VELOCITY AIRSPEED X X
O LOADING X X

PURE PURSUIT AIRSPEED X X

6 O'CLOCK X X
HEAT X
ACCELERATION X
RELATIVE ENERGY X
HEAT ASSEMBLY X X

IOWER SETTING AIRSPEED x
ACCELERATION X
SMASH X
EXTENSION X

RELATIVE ENERGY SMASH AX X
(MDC) VMT"tCAL MANEUVERING 7LAO PURSUIT X

LO YOYO Y
LAG ROLL X
RADIAL 0 X
BARREL ROLL X
CUTOFF X
PURE PURSUI'i
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(Table 28 continued)

ANGLE OFF SUBASSEMBLY UPTs IPs cPs

ANGLE OFF QUARTER PLANE X X x

SNAPSHOT 
x

WEAPONS'PARAMETERS X -

CUTOFF 
X

3-9 LINE x
LAO ROLL X
BARREL ROLL X
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(Table 28 oontinued)

LAG ROLL CONNECTED COMPONENT

UPTs IPm OPs
LAG ROLL (MDC) LAG PURSUIT X X

ASPECT ANGLE X X
0 LOADING X
RELATIVE ENERGY X
BARREL ROLL X
3-9 LINE X
WEAPONS PARAMETERS X
ANGLE OFF X
VERTICAL MANEUVERING X
AIRSPEED ASSEMBLY X A

LAO PURSUIT LAG ROLL X X X
QUARTER PLANE X X
RELATIVE ENERGY X
RADIAL G X
HEAT X
BARREL ROLL X
6 O'CLOCK X
HEAT ASSEMBLY A A

ASPECT ANGLE LAO ROLL A X

X -
QUARTER PLANE X X
CUTOFF X X
WEAPONS PARAMETERS X X

BARREL ROLL X
LO YO YO X
SNAPSHOT X
GUNS ASSEMBLY A X A

0 LOADING LAO ROLL X X
RADIAL O X X X
CORNER VELOCITY -
LIFT VECTOR X X
ACCELERATION X
WEAPONS PARAMETERS X

SNAPSHOT X
BARREL ROLL X
EXTENSION X
SMASH X
AIRSPEED ASSEMBLY X X X
GUNS ASSEMBLY -
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(Table 28 continued)

UPTs IPs aPs

RADIAL a (MDC) G LOADING x I
WEAPONS PARAMETERS i

LAG PURSUIT X

BARREL ROLL X
LIFT VECTOR X
QUARTER PLANE X
RELATIVE ENERGY X

VERTICAL E x

13 MOF ASSEMLY

3-9 LINE (MDC) ASPECT ANGLE 
A

HI Y0 YO X

QUARTER PLANE X X

LAG ROLL X
CUTOFF X

SNAPSHOT X
VERTICAL MANEUVERING X
ANGLE OFF
VERTICAL ASSEMBLY A x x

ANEOFF ASSEMBLY
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(Table 28 continued)

HEAT CONNECTED COMPONENT
UPTs IPa OPs

HEAT 6 O'CLOCK ' ,
WEAPONS PARAMETERS Xx
SMASH X
LAG PURSUIT X
PURE PURSUIT X
SWITCHOLOGY

6 O'CLOCK HEAT

PM PURSUIT X -

GUNS X
WEAPONS PARAMETERS X
LAG PURSUIT

QUARTER PLANE XVERTICAL/AIRSPEE.DAS3_9 B.

ACCELERATION CONNECTED COMPONENT

AJCELERATION EXTENSION X
SMASH - x X

POWER SETTING X
LO YO YO
AIRSPEED X

o LOADING X
OVERTAKE X

PURE PURSUIT X

AIRSPEED ASSEMBLY x x

EXTENSION ACCELERATION K
QUARTER PLANE x

AIRSPEED X X

WEAPONS PARAMETERS X
POWER SETTING X

SMASH X

0 LOADING X

AIRSPEED ASSEMBLY x X
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(Table 28 oonoluded)

INDEPENDENT CONCEPTS
UPTs IPs, OPs

BARREL ROLL LAG ROLL X
RADIAL G x
SNAPSHOT X
VERTICAL MANEUVERING X X
ASPECT ANGLE X
ANGLE OFF X
0 LOADING X
RELATIVE ENERGY X
LAO PURSUIT X
HI YO YO X
VERTICAL ASSEMBLY X X
LAO -A-SSEMBLY

OVERTAKE AIRSPEED x X
ANGLE OFF X
CUTOFF X X
LEAD PURSUIT X X
SMASH X
SNAPSHOT X
ACCELERATION X
GUNS ASSEMBLY (CUTOFF) X X X
rMTMNP ffSITMBLY x

LO YO YO HI YO Yo X
QUARTER PLANE X
RELATIVE ENERGY X
ACCELERATION X
AIRSPEED X
ASPECT ANGLE X
CUTOFF X
AIRSPEED/ACCEL. MACRO. X X
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Table 28 also reveals connections from concepts to assemblies. To
connect from a concept to an assembly requires only a link from that
concept to any concept in that assembly. For example, WEAPONS PARAM-
ETERS has a critical link to the Heat Assembly. This means that while
IPs and GPs did not agree on the direct link emanating from WEAPONS
PARAMETERS, they did agree that there should be some connection from
WEAPONS PARAMETERS to the assembly of concepts dealing with Heat. In
this specific example, the MEN for IPs had a WEAPONS PARAMETERS to
HEAT link while the GPs had a link between WEAPONS PARAMETERS and 6
O'CLOCK. Since HEAT and 6 O'CLOCK belong to the same assembly, a link
is added to that assembly. This is incidentally a critical link t~iat
the UPTs also have.

Table 28 permits the classification of concepts along two dimen-
sions: underdefinition and overdefinition. Underdefined concepts for
UPTs are those that are missing a large proportion of critical links.
Overdefined concepts are those that the UPTs have connected to the
network using links that neither the IPs nor the GPs have in their
networks. We determined the probability of a UPT having a link
given that the link was critical as well as the probability of the
UPTs having a link given that neither experienced pilot group had the
link. We then did a median split on each dimension and classified the
concepts as to whether they were high on both dimensions, low on both
dimensions, or high on one and low on the other. This leads to four
classes of concepts: well defined, over defined, under defined, and
misdefined. These concepts appear in Table 29. The actual links
involved in the classification of these concepts appear in Table 30.

-The critical links not held by tne UPTs are those relations found'
in the conceptual structure of experienced pilots but not in that of
the students. Some of the structure missing in the student networks
are concept-to-concept links (e.g., VERTICAL MANEUVERING--QUARTER
PLANE) whereas others are concept-to-assembly links (e.g., LAG
PURSUIT--HEAT ASSEMBLY). Recall that if a student is missing a
critical concept-to-assembly link, the MEN for the UPTs does not
contain a link from that concept to any concept in that assembly. For
some concepts, the UPTs have none of the critical relations: LEAD
PURSUIT, HEAT, and LOW YO YO. In fact, for LEAD PURSUIT, the UPTs
show no link to any concept in the Guns Subassembly to which it
belongs. Two other critical relations shown in Table 30 are worth
highlighting here. Both the VERTICAL MANEUVERING--QUARTER PLANE and
the ACCELERATION--EXTENSION relations are highly discriminating
relations according to the pattern classification analys-is discussed
earlier. The fact that these two relations are critical (according to
the GWN analysis) and the fact that they are important in discrim-
inating between novice and experienced pilots (according to the
pattern classification analysis) provide convergent validation that
these relations are important parto of an expert's organi'zation of
flight Information that Is lackinp in that or the novice.



Table 29

Comparison of Novice and Expert Conaepts

Well-Defined Conoepts

GUNS PURE PURSUIT SWITCHOLOGY
o LOADING LIFT VECTOR 6 O'CLOCK
AIRSPEED OVERTAKE CORNER VELOCITY

Over-Defined Coge•ts (Comnare Table •

SNAPSHOT WEAPONS ANGLE OFF
VERTICAL MANEUVERING HI YO YO QUARTER PLANE
BARREL ROLL SMASH RELATIVE ENERGY
LAG PURSUIT 3-9 LINE ACCELERATION
EXTENSION LO YO 1O

Under-Defined Conoepts (Compare Table.i 01A

LEAD PURSUIT CUTOFF POWER SETTING
ASPECT ANGLE HEAT

Misdefined Conoepts

LAG ROLL RADIAL 0

..

-81-

Li .... i ~~L .I .. :i.ZZ..L . 4 ea kd tke .UAflnA fhIta~M~lS.LaM-hAf6AS.-i



Table 30

Dirferenoes in Conoept Links for Novices and Experts

Critical Expert Links not in Novice Network
(Underdefined Concepta)

OUN3-LEAD PURSUIT SNAPSHOT-ANGLE OFF
CUTOFF-LEAD PURSUIT VERTICAL MANrUVERlTNO-QUARTER PLANE
VERTICAL MANEUVERING-AIRSPEED AIRSPEED,-POWIER SETTING
LAO ROLL-ASPECT ANGLE LAO ROLL-G LOADING
LAG ROLL-AIRSPEED ASSEMBLY LAG PURSUIT-11EAT ASSEMBLY
ASPECT ANGLE-3/9 LINE a LOADING-GUO1 ASSEMBLY
RADIAL G-VERTICAL ASSEMBLY RADIAL G-ANGL.E OFF ASSEMBLY
HEAT-6 O'CLOCK ACCELERATION-EXTENSION
LO TO YO-AIRSPEEDtACCELERATION

MACROASSEMBLY

Linka in 1he Novice Network not round for Ex orts

7(0 verdefined Conae~p - __

OUNS-6 O'CwOCK 3/9 LINE-SNAPSHOT
BARREL ROLL-SNAPSHOT WEAPONS PARAMETERS-EXTENSION
WEAPONS PARAMETERS-LAO ROLL WEAPONS PARAMETERS-RADIAL 0
WEAPONS PARAMBTERS-G LOADING CUTOFF-3/9 LINE
ANGLE OFF-OVERTAKE VERTICAL MANEUVERING-RELATIVE ENERGY

HI TO YO-LO YO YO HI YO YO- 3/9 LINE
LIFT VECTOR-QUARTER PLANE QUARTER PLANE-EXTENSION
QUARTER PLANE-ASPECT ANGLE QUARTER PLANE-LO YO YO
SMASH-HEAT POWER SETTING-ACCELERATION
RELATIVE ENERGY-LAG PURSUIT RELATIVE ENEROY-LO YO YO
LAG ROLL-BARREL ROLL LAG ROLL-3/9 LINE
LAG PURSUIT-RADIAL 0 HADIAM a-BARREL POLL

4
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Perhaps as serious as not having the correct relations is having
inappropriate relations. The overdefined concepts are those that the
students have connected to the network in a fashion that is different
from either group of experienced pilots. For some concepts, this
overdefinition is quite severe: WEAPONS PARAMETERS, QUARTER PLANE, and
3-9 LINE. In fact, for QUARTER PLANE, 19% (4/21) of those relations
not found in an experienced pilot's notwork are included in the UPT
structure. One other inappropriate relation is worth highlighting.
The pattern classification procedures suggest that this relationship
is highly discriminating, and the network analysis suggests that it is
important to the UPT atructure: HIGH YO YO--LOW YO YO. Apparently the
similariloy between HIGH and LOW YO TO in in name only for the exper-ienced pilots, yet the UPTs have that as a direct concept-to-conoept •link in their network.

Finally, two concepts did not include many of the critical links
and, in addition, included many extraneous links. In this sense, LAO
ROLL and RADIAL G were both underdefined and overdefined, but more
appropriately we have termed them miadefined. For LAO ROLL, the UPTa
do not have critical links to ASPECT ANGLE, 0 LOADING, nor any link to
the AIRSPEED SUBASSEMBLY. Instead they do have extraneous links from
LAG ROLL to BARREL ROLL, 3-9 LINE, and WEAPONS PARAMETERS. Similarly,
for RADIAL U the UPT. have no critical connections to any concept in
either the VERTICAL SUBASSEMBLY or the ANGLE OFF ASSEMBLY, but do have
extraneous links to WEAPONS PARAMETERS, LAO PURSUIT, and BARREL ROLL.

This phase of the project has highlighted those concepts and
relations that the UPTa have not as yet mastered. The emphasis on
differences between the UPTs and expert pilots should not be taken as
indicative of the progress of the UPTa, In fact, their overall
correspondence with the 1Ps, and especially with the GPs, is quite
high. Several concepts are quite well mastered while several others
are only slightly (1 link) different from the more experienced pilots.

The use of general networks and the OWN algoritm holds substan- I
ttal promise in attempts to specify the local relations and structure
present in the conceptual organization of critical flight Inform-
ation. In addition, it allows a detailed, conoept-by-concept, compar-
ison across groups that differ in expertise. The use of networks
coupled with other techniques, especially MDS and pattern classir-
ioation, should provide valid, usable information in a form that oould
be incorporated into the training prooedures of fighter pilots.
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GENERAL DISCUSSION

Primary Accomplishments

This project has produced several interesting and potentially
useful findings. The major new theoretical contribution lies in the
development of methods for obtaining and analyzing networks of
concepts. This method should contribute to the continued development
of an understanding of structures and processes in semantic memory.

In the domain of critical flight-related concepts, we have shown
that systematic methods can yield valid and reliable descriptions of
the structure of these concepts. Further, these structures can be
used to identify individuals as members of groups with different
training and experience. We have also identified some specific areas
of disagreement in the structures possessed by expert and novice
pilots. These specific differences may deserve special attention in
lead-in fighter training. The structures themselves may also prove to
be useful in the academic program since they provide some graphic
examples of the differences in the ways novices and experts think
about critical flight concepts.

In the context of the ongoing effort in this contract, this first
contract period has resulted in several analytical methods with which
to pursue experimental analysis of conceptual structures in fighter
pilots. While much of the initial effort has been concerned with
measurement issues, it has been necessary to define and validate the
basic purpose of the contract. The work in the initial period has
also led to several structural analyses that serve to define struct-
ures of memory for critical flight information. We now have a firm
foundation on which to build further work. While we intend to
continue to investigate the problems associated with representing
knowledge, the next contract period will include experimental
investigations of the structures we have already established.

Utility and Limitations of Particular Structural Analyses

Irn this project, several techniques have been applied for
obtaining structural representations of critical flight information.
We began by applying traditional scaling techniques, such as multi-
dimensional scaling and hierarchical clustering analysis to psycho-
logical distances derived from similarity ratings. We then developed
a new structuring technique, general weighted networks, and applied it
to the same similarity data. Though the resulting critical flight
structures point to a number of similar conclusio1 ,s, they d6&-_ffer in
a number of ways. Consideration of these rIifferences in light of the
current interest in fighter pilot conceptual memory will allow the
important details to be abstracted from each structure. These details
can be used to gain an understanding of critical flight information
that could not be gleaned from any sitnple ntructurnl representation.
We bel"ive that the appropriate use of :01 ntructural representations
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is the most sensible way to proceed In attempting to understand any
organized conceptual domain. It is a particularly rational approach
in attempting to understand conceptual domains that have been
subjected to almost no prior analysis, as is the case with critical
flight information.

Consider first the results of the Multidimensinal Scaling (MDS)
procedures. MDS took as inpuL R set of empirical psychological
distances and produced a set of derived distances. The derived
distances contained metric properties that were not present in the
empirical Judgments. The fact that this metric information is quite
useful is highlighted by the consistent improvement in correlations
found with distances compared to empirical ratings and in the more
successful pattern classification found with the MDS distances, The
constraints that MDS places on the distances are quite severe (e.g.,
the formation of isosceles triangles) and thus results in both very
useful and very misleading information in the structures. The useful
information appears in the form of global properties of the
structure. For example, only MDS can abstract dimensions from the
rating data, but it can produce local distortions in the distances
between particular pairs of concepts,

With MDS, solutions of moderate dimensionality were obtained for
each of the subject groups, Provided that the dimensions produced in
the solution can be identified, these dimensions can provide a great
deal of information about the underlying characteristic features of
the conceptual domain. For example, the fact that a temporal sequenc-
ing seems to pervade these domains is obviously critical to the
understanding of the structure, The temporal dimension serves as a
good example of both a strength and weakness of multidimensional
scaling solutions. No other scaling solution could have shown this
continuous feature of the structure. Thus, MDS is unsurpassed in its
ability to point out important underlying continuous dimensions of
variation in the concepts. Alternatively, if the underlying dimension
is dilsorete then the MDS solution is leas than optimal and should be
used in conjunction with one of the other scaling procedures. 3o,
though the metric properties of an MDS solution allows for the abstrac-
tion of dimensions, a boundary condition on the usefulness of this
global feature of MDS is that the dimension be continuous.

Though the MDS metric places points in an N dimensional space and
allows for the identifination of continuous dimensions, the metric
requires a certain sacrifice to accomplish this. The sacrifice is In
terms of local distortions in the structure which prevent an analysis
of the subcomponenta of the MDS structure. Hierarchical Clustering
(HC) analysis Rnd General Weighted Networks (OWN) focus on these local
relationship&, though they provide less global information than does
MDS.
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HC tranforms the empirical ratings into a set of classes. A
concept within a cluster is more related to another member of the
cluster than to a concept from another cluster. Comparing an HC
solution with an MDS solution for the same data helps point out some
of the distortions that MDS makes in the lona] structure. Two items
close together in multidimensional. npanc, may not cluster together
while two items distant in spano may olu:iter together. Figure 17
shows an HC solution superimposed on a two dimensional space of split-
plane concepts for IPs.

HC requires that a concept belong to one and only one cluster
though that cluster as a whole may belong to a larger, in a sense
superordinate, cluster. This hierarchical constraint also results in
some distortions in the structure since many concepts do not exist
with one another in a hierarchical relationship. Another problem with
using HC as a means for determining local relations is that there is
no a priori way to partition the tree to allow finer grained
analyses. Though the trees for UPTs and IPs were partitioned into
five major clusters, this couuld have easily been four or seven.
General weighted networks provide a better vehicle for determining
local relations. However, HC does produce free nodes in its solution
(unlabelled nodes in the tree) that OWN does not produce in its
present form. These free nodes may be valualle if one wished to
determine hierarchical relations, though they are often difficult to
label. The OWN does not distinguish between hierarchical and
nonhierarchical relations without some a priori knowledge of the
relationship between concepts. However, MDS, HC, and GWN are not
typically applied to random collections of concepts; rather the user
typically brings intuition to bear on the establishment of the
conceptual domain. Thus there is no apparent benefit of HC over OWN
for establishing local relations within a conceptual structure.

OWN also takes psychological distance data as input and produces
d conceptual structure in the form of a network. Currently, the
network mirrors the original ratings rather than transforming them in
any way. This has the advantage of staying close to the data base
and, thus, not introducing distortion into the links. However, there
is distortion in chains of links in that the original ratings do not
correspond to the length of a chain. Future work will focus on
improving the metric properties of OWN.
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Networks have a number of properties that allow for a better
understanding of conceptual structures. Unlike MDS, networks focus on

the local relations of the structure. In this sense, it is similar to

HC. Networks allow multiple connections within the structure and thus
allow one to partition the network into assemblies and cycles. As has
been shown in this report, assemblies and cycles form meaningful units
that aid in the understanding of the overall network. In addition,
cycles and assemblies allow a comparison across groups of individuals
on a concept-by-concept basis: a task that is difficult or impossible
to do with the more traditional scaling procedures. Finally, networks
are weighted and this distance information can be used to form minimum
cycles, determine the concept in the network that is closest to all
other concepts (median), or determine 'the concept that allows the most
rapid connection to the most distant concept (center). Though these
last two properties are more interpretable in a metricized network,
their potential for summarizing networks and differences among
networks can be quite useful. Finally, networks potentially allow
concepts as well as links to be weighted. More important concepts or
more "costly" concepts could be weighted in such a way as to make some
concepts more critical than others. As GWN now stands, it provides a
great deal of informaticn about the local structure of conceptual
domains and, with the addition of a metric, will introduce a number of
other features that will aid in understanding critical flight inform-
ation. We believe that the results of GWN, coupled with the global
characteristics gleaned from MDS analyses, should provide the best
understanding of the structure of critical flight information.

Directions for Future Work

One major area to be pursued in future work concerns the
experimental verification of the structures we have identified. We
intend to pursue this goal with priming methodology and recognition
memory experiments. We are also proceeding witli the analysis of
memory in the form of scripts and frames. It would also be useful to
pursue the predictive power of these techniques by systematically
following individual UPTs through training. Perhaps individuals could
be identified who would most benefit from fighter tsraining.

The network algorithm should be developed further. It should be
possible to develop a metric based on the network'that could lead to
some experimental comparisons of the MDS metric and the GWN metric.
While the network itself is produced by an algorithm, more work is
needed to develop algorithms for defining cycles and assembll~es in the
networks. In short, the network representation is most promising, and
additional efforts will be required for the network analysis to reach
its full potential.
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V
Further detailed analysis of the concepts from the low-angle

strafe maneuver could be performed along the same lines as that
presented here for the split-plane maneuvers. Also, another group of
students who have completed fighter lead-in training should be
obtained to permit an analysis of the effects of training In the
specific maneuvers represented by our stimulus materials.

Recommendations

The research presented in this report provides a detailed
analysis of the conceptual structure of critical flight information
in fighter pilots. As such, the structures should be of use in
designing training programs for students attempting to acquire these
conoeptiial struotures. In addition, the representations themselves
may prove to be useful as training aids. The network analysis, for
example, shows how expert fighter pilots organize the concepts
involved in particular maneuvers. To the extent that the network
representation provides an understandable representation of experts'
knowledge structures, students may find it useful in learning about
the maneuvers.

From a somewhat different angle, we have identified specific
differences in the conceptual structures of stu'dents and expert
fighter pilots. In particular, the differences show, in part, what
experts know that students do not and what misconceptions the students
may have acquired from earlier training or from other life exper-
iences. These areas of difference should receive special attention in
the training program for fighter pilots.

Finally, our work in classifying individuals based on their
conceptual structure suggests further work in attempting to predict
the success of future fighter pilots based on the conceptual
structures students demonstrate early on in training. It may be
necessary to study the structures associated with a different set of
concepts than those used in the present investigation. For example,
perhaps some concepts relating to attitude and motivation should be
included along with concepts relating to the operation of aircraft.
The classification techniques we have developed appear to be very
sensitive to differences in cognitive structures, and they may well
provide some predictive power for organizing the training program to
produce maximum benefit for those who are likely to benefit the mont
from fi,'hter training.
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APPENDIX

The tables in the appendix present the detailed inter-individual
correlations for both rating scores and MDS distances. Both the split-
nlane concepts and the low-angle strafe concepts are represented.

Split-Plane Manuevera

Inter-Individual Correlation Matrix

11 through I7 are individual inatruotoi pilots

Rating Scores

Ii 12 13 14 15 16 I7

11 - .35 .47 .45 .42 .58 .43
12 .35 - .41 .41 .47 .38 .3213 .47 .41 - .49 .43 .42 4•3
14 .45 .41 .49 - .41 .43 .41
IS .42 .47 .43 .41 - .42 .41
16 .58 .38 .42 .43 .42 - .37

17 .43 .32 .43 .41 .41 .37 -

Mean Correlation a .42

Distances in Multidimensional Scaoe

11 12 13 14 15 16 17

11 - .34 .53 .50 .45 .57 .47
12 .34 - .41 .40 .43 .35 .38
13 .53 .41 - .59 .47 .44 .52
14 .50 .40 .59 - .41 .51 .51
IS .45 .43 .47 .41 - .41 .49
16 .57 .35 .44 .51 .41 - .37
17 .47 .38 .52 .51 .49 .37 -

Mean Correlation .145
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Split-Plane Manuevers

Inter-Individual Correlation Matiix

01 through G9 are individual guard pilots

Rating Scores

C1 02 G3 G4 05 G6 07 G8 09

01 - .44 .42 .32 .30 .37 .34 .38 .36
02 .44 - .40 .36 .42 .43 .51 .43 .36
03 .42 .40 - .33 .29 .40 .43 .31 .39
04 .32 .36 .33 - .32 .38 .25 .42 .33
05 .30 .42 .29 .32 - .38 .31 .29 .33
06 .37 .43 .40 .38 .38 - .30 .46 .36
07 .34 .51 .43 .25 .31 .30 - .33 .38
08 .38 .43 .31 .42 .29 .46 .33 - .25
09 .36 .36 .39 .33 .33 .36 .38 .25 -

Mean Correlation w .36

Sin Multidimensional Solos

01 02 03 G4 05 06 07 08 09

01 - .40 .47 .37 .32 .34 .39 .38 .37
02 40 - .47 .42 .41 .41 .50 .40 .38
03 .47 .47 - .42 .32 .43 .54 .33 .50
04 .37 .42 .42 - .35 .43 .35 .41 .38
05 .32 .41 .32 .35 - .32 .38 .27 .33
06 .34 .41 .43 .43 .32 - .34 .45 .36
07 .39 .50 .54 .35 .38 .34 - .32 .47
08 .38 .40 .33 .41 .27 .45 .32 - .29
09 .37 .38 .50 .38 .33 .36 .47 .29 -

Mean Correlation a .39
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Split-plane Manuevers
Inter-Individual Correlation Matrix

U1 through U17 are individual undergraduate pilots

U1 U2 U3 U4 U5 U5 U7 U8 109 UIO Uli U12 U13 U14 U15 U16 U17

Rating Scores

U1 - .31 .24 .29 .37 .30 .14 .28 .411 .34 .36 .40 .31 .44 .35 .29 .24
U2 .31 - .26 .32 .26 .25 .12 .21 .34 .30 .34 .29 .26 .36 .28 .28 .28
U3 .24 .26 - .32 .37 .31 .26 .44 .37 .29 .44 .36 .35 .38 .27 .30 .23
U4 .29 .32 .32 - .39 .30 .12 .30 .45 .33 .47 .29 .30 .49 .27 .35 .28
U5 .37 .26 .37 .39 - .20 .22 .28 .42 .24 .38 .41 .26 .52 .27 .29 .30
U6 .30 .25 .31 .30 .20 - .25 .34 .33 .24 .30 .26 .29 .35 .25 .18 .28
U7 .14 .12 .26 .12 .22 .25 - .24 .28 .30 .30 .34 .30 .32 .17 .23 .28
U8 .28 .21 .44 .30 .28 .34 .24 - .36 .26 .43 .24 .41 .36 .22 .19 .21
U9 .44 .34 .37 .45 .42 .33 .28 .36 - .37 .43 .34 .36. 46 .31 .30 .29
U1O .34 .30 .29 .33 .211 .24 .30 .26 .37 - .34 .36 .31 .36 .30 .27 .26
U11 .36 .34 .44 .47 .38 .30 .30 .43 .43 .34 - .36 .43 .43 .38 .32 .29
U12 .40 .29 .36 .29 .41 .26 .34 .24 .34 .36 .36 - .32 .47 .31 .29 .27
U13 .31 .26 .35 .30 .26 .29 .30 .41 .36 .31 .43 .32 - .39 .29 .29 .29
U14 .44 .36 .38 .49 .52 .35 .32 .36 .46 .36 .43 .47 .39 - .33 .35 .35
U15 .35 .28 .27 .27 .27 .25 .17 .22 .31 .30 .38 .31 .29 .33 - .18 .26
U16 .29 .28 .30 .35 .29 .18 .23 .19 .30 .27 .32 .29 .29 .35 .18 - .34
U17 .24 .28 .23 .28 .30 .28 .28 .21 .29 .26 .29 .27 .29 .35 .26 .34 -

Mean Correlation a .31

Distanoes in Multidimensional Spaoe

U1 - .33 .28 .28 .33 .27 .24 .31 .46 .39 .39 .30 .29 .43 .30 .32 .26
U2 .33 - .27 .27 .18 .22 .18 .19 .34 .28 .29 .24 .29 .36 .26 .31 .26
U3 .28 .27 - .33 .35 .27 .25 .38 .38 .32 .41 .28 .33 .31 .26 .33 .21
U0 .28 .27 .33 - .27 .16 .12 .27 .36 .34 .39 .24 .33 .41 .26 .29 .29
U5 .33 .18 .35 .27 - .17 .10 .31 .27 .22 .32 .26 .22 .44 .25 .23 .25
U6 .27 .22 .27 .16 .17 - .29 .29 .35 .19 .23 .22 .27 .36 .21 .15 .25
U7 .24 .18 .25 .12 .10 .29 - .20 .29 .33 .32 .23 .28 .25 .13 .30 .27
U8 .31 .19 .38 .27 .31 .29 .20 - .35 .29 .42 .21 .35 .35 .29 .21 .19
U9 .46 .34 .38 .36 .27 .35 .29 .35 - .38 .42 .28 .34 .47 .33 .28 .31
U1 .39 .28 .32 .34 .22 .19 .33 .29 .38 - .41 .24 .31 .32 .37 .30 .28
Ull .39 .29 .41 .39 .32 .23 .32 .42 .42 .41 - .21 .43 .35 .38 .25 .26
U12 .30 .24 .28 .24 .26 .22 .23 .21 .28 .24 .21 - .15 .37 .20 .24 .26
U13 .29 .29 .33 .33 .22 .27 .28 .35 .34 .31 .43 .15 - .110 .26 .29 .26
U14 .43 .36 .31 .41 .44 .36 .25 .35 .47 .32 .35 .37 .40 - .28 .35 .43
U15 .30 .26 .26 .26 .25 .21 .13 .29 .33 .37 .38 .20 .26 .28 - .14 .28
U16 .32 .31 .33 .29 .23 .15 .30 .21 .28 .30 .25 .24 .29 .35 .14 - .28
U17 .26 .26 .21 .29 .25 .25 .27 .19 .31 .28 .26 .26 .26 .43 .28 .28 -

Mean Correlation * .29
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Split-Plane Manuevers

Inter-Individual Correlation Matrix

Wi through W4 are individual IWSO0

Ratina Saorea

W1 W2 W.3 W4

Wi - .45 .42 .40
W2 .45 - .24 .28
W3 .42 .24 - .50
W4 .40 .28 .50 -

Mean Correlation a .38

Diltanoee AL Multidimensional Igace

W1 W2 W3 W4

Wi - .36 .46 .45
W2 .36 - .24 .23
W3 .46 .24 - .53
W4 .45 .23 .53 -

Mean Correlation u .38

-96-

IVA



Split-Plane Manuevers

Inter-Individual Correlation between Guard
and Instructor Pilots

01 through 09 are individual guard pilots
11 thrnugh 17 are indlvidual instructor pilots

Rating Scores

01 02 03 04 05 06 07 G8 09

11 .38 .42 .48 .38 .32 .34 .38 .42 .34
12 .36 .33 .35 .21 .25 .24 .31 .16 .25
13 .40 '41 .39 .30 .30 .28 .42 .32 .44
14 .38 .39 .41 .31 .37 .33 .42 .28 .35
15 .38 .36 .44 .27 .24 .29 .39 .26 .45
16 .34 .31 .40 .29 .24 .32 .30 .28 .32
I7 .39 .46 .113 .37 .36 .35 .48 .25 .43

Mean Correlation v .35

Distances in Multidimensional Snoe

01 02 03 04 05 06 07 08 09

Ii .38 .40 .50 .44 .36 .39 .44 .36 .39
12 .37 .31 .36 .30 .29 .27 .39 .23 .11O
13 .42 .45 .47 .29 .35 .30 .48 .30 .50
14 .41 .39 .45 .33 .38 .30 .45 .24 .42
15 .32 .36 .48 .27 .25 .32 .41 .25 .50
16 .37 .33 .41 .32 .25 .31 .28 .28 .32
17 .112 .51 .52 .140 .36 .35 .49 .29 .46

Mean Correlation m .37
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Split-Plane Manuevers

Inter-Individual Correlations for IPs and UPTa

11 through 17 are individual instructor pilots
UI through U17 are individual undergraduate pilots

11 12 13 l4 15 16 17

R Scores
UI .23 .20 .M .26-.13 .16 .29
U2 .18 .06 .10 .18 .13 .13 .16
U3 .31 .22 .26 .34 .29 .22 .26
U4 .23 .14 .15 .26 .16 .23 .23
U5 .15 .16 .15 .25 .23 .09 .17
U6 .26 .11 .17 .29 .19 .17 .25
U7 .12 .10 .21 .30 .17 .06 .24
U8 .25 .06 .11 .25 .18 ,20 .24
U9 .30 .18 .18 .32 .17 .19 .25

UIO .16 .12 .13 .25 .19 .09 .20
U11 .33 .16 .21 .30 .31 .21 .32
U12 .13 .19 .18 .23 .23 .07 .25
U13 .24 .17 .14 .21 .19 .16 .32
U14 .31 .19 .19 .32 .22 .21 .29
U15 .24 .13 .10 .24 .23 .19 .35
U16 ,34 .17 .31 .31 .23 .30 .28
U17 .16 .11 .09 .27 .19 .21 .16

Mean Correlation a .20

Distance in Multidimensional S
01 .26 .2r .17 .24 .21 .2; -- 7
U32 .21 .08 .11 .12 .17 .12 .18
U3 .31 .24 .25 .29 .29 .20 .31
U4 .21 .17 .13 .24 .20 .23 .24
U5 10 .19 .11 .17 .21 .13 .15
U6 .25 .16 .22 .27 .21 .19 .28
U7 .22 .21 .20 .29 .22 .13 .29
U8 .27 .16 .17 .25 .26 .20 .29
U9 .34 .18 .20 .34 .24 .22 .28

U10 .19 .16 .11 .19 .18 .15 .27
U11 .28 .19 .20 .23 .32 .21 .27
U12 .22 .26 .21 .20 .25 .14 .21
U13 .23 .15 .16 .20 23 ,15 .32
U14 .37 .29 .24 .32 .30 .29 .29
U15 .18 .17 .10 .21 .20 .21 .26
U16 .30 .22 .31 .26 .26 .26 .30
U17 .14 .23 .09 .30 .27 .20 .16

Mean Correlation a .22
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Split-Plane Manuevers

Inter-Individual Correlation Matrix for Instructor Pilots
and Instructor Weapons Systems Officers

I through 17 are individual instructor pilots
Wi through W4 are individual IWSOs

Ratin Scores

Ii 12 13 14 15 16 17

Wi .37 .37 .41 .40 .45 .38 .38
W2 .21 .40 .30 .22 .38 .20 .26
W3 .39 .35 .42 .49 .43 .37 .48
W4 .46 .40 .54 .48 .42 .48 .47

Mean Correlation a .39

Distance in MultidimensLanal Space

11 12 13 14 15 16 17

Wi .41 .34 .43 .42 .43 .43 .42
W2 .09 .31 .22 .15 .26 .15 .21
W3 .44 .42 .54 .53 .50 .44 .55
WA .54 .45 .55 .50 .47 .51 .53

Mean Correlation a .40
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Split-Plane Manuevers

Inter-Individual Correlation Matrix for OPs and UPTs

G1 through 09 are individual Guard pilots
U0 through U17 are individual Undergraduate pilots

G1 G2 03 04 05 06 G7 G8 G9

Ratin.g Soores

U1 .19 .17 .19 .21 .28 .22 .17 .21 .21
U2 .24 .23 .18 .29 .15 .26 .18 .28 .12
U3 .23 .33 .29 .35 .29 .28 .30 .30 .21
U4 .17 .24 .19 .26 .26 .25 .13 .26 .21
U5 .09 .21 .19 .21 .19 .22 .13 .20 .15
U6 .23 .21 .29 .30 .21 .23 .18 .30 .23
U7 .15 .27 .22 .27 .29 .22 .23 .09 .17
U8 .18 .24 .26 .28 .19 .15 .19 .28 .21
U9 .23 .26 .29 .28 .28 .31 .22 .28 .21
U10 .19 .26 .19 .25 .26 .28 .16 .20 .19
U11 .27 .31 .27 .38 .36 .33 .28 .35 .34
U12 .15 .28 .25 .26 .29 .23 .16 .14 .18
U13 .31 .28 .30 .29 .25 .27 .22 .22 .21
U14 .17 .23 .27 .35 .30 .32 .23 .25 .20
U15 .29 .23 .25 .29 .28 .26 .20 .23 .24
U16 .20 .40 .29 .29 .26 .28 .28 .29 .26
U17 .14 .20 .22 .28 .16 .22 .16 .18 .18

Mean Correlation z .24

Diatance& in Multidimensional SDaoe
U1 .24 .19 .22 .24 .27 .23 .32 .27 .25
U2 .21 .23 .13 .24 .16 .20 .23 .23 .10
U3 .21 .32 .31 .32 .28 .32 .32 .30 .22
U4 .22 .28 .18 .24 .23 .25 .14 .29 .17
U5 .13 .12 .19 .17 .15 .21 .17 .16 .09
U6 .25 .20 .33 .37 .20 .24 .23 .27 .22
U7 .15 .30 .28 .33 .32 .22 .31 .16 .25
U8 .21 .27 .23 .32 .17 .15 .23 .33 .19
U9 .30 .24 .28 .27 .23 .27 ,30 .24 .22
U10 .25 .28 .25 .33 .26 .25 .28 .28 .24

U11 .28 .28 .25 .33 .39 .30 .32 .36 .24
U12 .18 .21 .22 .26 .16 .17 .22 .11 .19
U13 .23 .27 .23 .28 .23 .29 .26 .25 .12
U14 .22 .25 .27 .38 .28 .28 .28 .28 .22
U15 .26 .20 .23 .29 .18 .21 .19 .30 .19
U16 .24 .46 .31 .33 .30 .26 .26 .30 .24
U17 .14 .19 .18 .31 .10 .17 .23 .15 .18

Mean Correlation c .24
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Split-Plane Manuevers

Inter-Individual Correlation Hatrix for Guard Pilots
and Instruotor Weapons Systems Offiers

01 through 09 are individual Guard pilots
Wi through W4 are individual IWSOs

Rating Soores

01 02 G3 04 G5 06 07 08 G9

Wl .39 .34 .46 .34 .31 .40 .33 .25 .46
W2 .30 .23 .25 .15 .18 .21 .17 .10 .25
W3 .38 .40 .44 .24 .33 .23 .41 .22 .38
W4 .45 .42 .44 .23 .30 .26 .39 .24 .45

Mean Correlation a .31

Distanoesa in Multidimensional SDace

G1 02 G3 04 05 06 07 08 G9

Wl .36 .35 .18 .44 .37 .36 .38 .22 .49
W2 .18 .21 .19 .08 .12 .09 .13 .04 .24
W3 .39 .45 .55 .35 .39 .31 .49 .27 .48
W4 .49 .48 .48 .31 .39 .32 .44 .28 .49

Mean Correlation z .34
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Split-Plane Manuevers

Inter-Individual Correlation Matrix for UPTa and IWSOs

Ul through U17 are individual undergraduate pilots
WI through W4 are individual IWSOs

Wi W2 W3 W4

Ratjng Soores
ul .1f .07 .26 .19
U2 .09 .01 .14 .08
U3 .26 .10 .22 .25
U4 .20 .03 .23 .22
U5 .23 .11 .15 .11
u6 .22 .10 .23 .22
U7 .27 .10 .26 .21
US .16 .04 .26 .24
U9 .18 .04 .211 .25

Ulo .21 .07 .20 .16
Ull .35 .12 .30 .29
U12 .22 .19 .21 .13
U13 .27 .11 .27 .24
U14 .30 .08 .33 .19
U15 .17 .09 .19 .17
U16 .30 .17 .29 .25
U17 .?P .04 .15 .15

Mean Correlation u .18

Di•tanoes in Multidimensional §paoe
U1 .23 .12 .29 .26
U2 .14 .03 .16 .10
U3 .27 .07 .32 .26
U4 .19 .10 .26 .22
U5 .25 .12 .19 .10
U6 .26 .05 .37 .23
U7 .33 .12 .36 .28
US .14 .01 .29 .25
U9 .22 .05 .32 .32

U1O .25 .05 .29 .20
Ull .29 .11 .27 .32
U12 .19 .17 .20 .24
U13 .21 .09 .31 .29
U14 .27 .06 .35 .23
U15 .12 .04 .17 .17
U16 .29 .17 .30 .27
U17 .22 .08 .20 .11

Mean Correlation a .20
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Low-Angle Strafe

Inter-Individual Correlation Matrix

I1 through 16 are individual instructor pilots

RAtina Scores

11 12 13 14 15 16 I

11 - .49 .39 .57 .49 .41

12 .49 - .40 .50 .42 .39
14 .57 .50 .47 - .53 .45

I5 .49 .42 .36 .53 - .42
16 .41 .39 .31 .45 .42 -

Mean Correlation a .44

Distanoe* in Multidimensional Sos

11 12 13 14 15 16

11 - .57 .45 .64 .51 .44
12 .57 - .44 .57 .41 .50
13 .45 .44 - .54 .44 .38
14 .64 .57 .54 - .53 .49
15 .51 .41 .44 .53 - .44
16 .44 .50 .38 .49 .44 -

Mean Correlation u .49
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Low-Angle Strafe

Inter-Individual Correlation Matrix

Ul through U16 are individual OPTs

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16

Rating Scores

U1 - .23 .27 .18 .22 .30 .25 .28 .24 .35 .29 .29 .29 .25 .18 .25
U2 .23 - .40 .31 .33 .32 .33 .39 .34 .41 .30 .20 .41 .29 .29 .40
03 .27 .0 -. 42 .24 .29 .32 .47 .37 .51 .38 .21 .38 .27 .37 .37
U4 .18 .31 .42 - .25 .27 .27 .34 .25 .30 .28 .22 .31 .25 .37 .32
U5 .22 .33 .24 .25 - .23 .37 .31 .23 .32 .09 .24 .21 .26 .27 .32

U6 .30 .32 .29 .27 .23 - .40 .45 .44 .47 .25 .36 .31 .31 .33 .32
U7 .25 .33 .32 .27 .37 .40 - .31 .41 .47 .16 .37 .39 .29 .32 .37
U8 .28 .39 .47 .34 .31 .45 .31 - .35 .49 .31 .32 .37 .33 .40 .341
U9 .24 .34 .37 .25 .23 .44 .41 .35 - .42 .24 .35 .36 .32 .36 .36

010 .35 .41 .51 .30 .32 .47 .47 .49 .42 - .?9 .43 .43 .37 .40 .46
011 .29 .30 .38 .28 .09 .25 .16 .31 .24 .29 - .11 .27 .25 .18 .21
U12 .29 .20 .21 .P2 .24 .36 .37 .32 .35 .43 .11 - .19 .21 .24 .32
013 .29 .41 .38 .31 .21 .31 .39 .37 .36 .43 .27 .19 - .29 .34 .39
U14 .25 .29 .27 .25 .26 .31 .29 .33 .32 .37 .25 .21 .29 - .29 .25
U15 .18 .29 .37 .37 .27 .33 .32 .40 .36 .40 .18 .24 .34 .29 - .38
U16 .25 .40 .37 .32 .32 .32 .37 .41 .36 .46 .21 .32 .39 .25 .38 -

Mean Correlation a .32

Diatances in Multidimensional SDaoe

Ul - .20 .17 .14 .29 .27 .22 .34 .18 .31 .17 .22 .26 .24 .25 .24
U2 .20 - .41 .29 .31 .40 .36 .47 .39 .41 .20 .17 .41 .38 .27 .49
U3 .17 .41 - .40 .27 .33 .28 .45 .23 .45 .25 .20 .36 .27 .32 .38
U4 .14 .29 .40 - .15 .26 .17 .28 .15 .22 .14 .20 .19 .19 .27 .20
U5 .29 .31 .27 .15 - .28 .36 .35 .23 .35 .11 .19 .29 .29 .28 .37
U6 .27 .40 .33 .26 .28 - .44 .50 .56 .51 .22 .41 .33 .40 .31 .36
U7 .22 .36 .28 .17 .36 .44 . .39 .43 .53 .13 .33 .45 .32 .31 .46
U8 .34 .47 .45 .28 .35 .50 .39 - .33 .56 .28 .30 .39 .41 .44 .59
U9 .18 .39 .23 .15 .23 .56 .43 .33 - .46 .26 .34 .40 .40 .31 .36

U10 .31 .41 .45 .22 .35 .51 .53 .56 .46 - .24 .37 .47 .48 .42 .54
Ul .17 .20 .25 .14 .11 .22 .13 .28 .26 .?4 - .08 .13 .22 .14 .32
012 .22 .17 .20 .20 .19 .41 .33 .30 .34 .37 .08 - .21 .28 .20 .31
U13 .26 .41 .36 .19 .29 .33 .45 .39 .40 .47 .13 .21 - .32 .31 .434
u14 .24 .38 .27 .19 .29 .40 .32 .111 .40 .48 .22 .28 .32 - .29 .38
U15 .25 .27 .32 .27 .28 .31 .31 .44 .31 .42 .14 .20 .31 .29 - .35
U16 .24 .49 .38 .20 .37 .36 .46 .59 .36 .54 .32 .31 .44 .38 .35 -

Mean Correlation a .32
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Low-Angle Strafe

Inter-Individual Correlation Matrix

Wi through W7 are individual weapons systeMs officerm

RatinA Soores

WI W2 W3 WA W5 W6 W7

W1 - .43 .49 .34 .09 .56 .46
W2 .43 - .49 .37 .19 .50 .44
W3 .49 ,49 - .39 .15 .52 .45
W4 .34 .37 .39 - .18 .39 .29
W5 .09 .19 .15 .18 - .17 .12
W6 .56 .50 .52 .39 .17 - .50
W7 .46 .44 .45 .29 .12 .50 -

Mean Correlation a .36

Diatanoem in Multidimenaional §jace

WI W2 W3 W4 W5 W6 W?

W1 - .56 .43 .17 .46 .51 .52
W2 .56 - .51 .12 .55 .52 .50
W3 .43 .51 - .11 .45 .42 .39
W4 .17 .12 .11 - .16 .11 .17
W5 .46 .55 .45 .16 - .53 .49
W6 .51 .52 .42 .11 .53 - .54
W? .52 .50 .39 .17 .49 .54 -

Mean Correlation x .39
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Low-Angle Strafe

Inter-Individual Correlation Matrix

11 through 16 are individual Inatruotor pilots
U1 through U16 are individual undergraduate pilots

II 12 13 14 15 16

R Scores

U1 .19 .16 .18 .15 .09 .21
U2 .17 .21 .28 .25 .22 .23
U3 .11 .09 .20 .16 .13 .11
U4 .12 .09 .18 .14 .09 .14
U5 .13 .16 .23 .17 .11 .16
U6 .21 .22 .22 .21 .28 .32
U? .14 .17 .31 .21 .26 .22
US .23 .19 .26 .22 .23 .27
U9 .17 .14 .33 .18 .29 .27

U10 .30 .29 .41 .32 .32 .27
U11 .06 .03 .11 .04 .00 .11
U12 .29 .20 .26 .28 .26 .28
U13 .21 .21 .25 .21 .32 .22
U14 .13 .14 .32 .20 .23 .21
U15 .10 .18 .35 .14 .18 .23
U16 .15 .13 .30 .24 .23 .13

Mean Correlation m .20

Dist g JU MultidimensiRnali Soae

U1 .22 .24 .20 .20 .17 .19
U2 .23 .25 .30 .23 .29 .21
U3 .10 .12 .23 .18 .11 .06
U4 .11 .11 .19 .13 .09 .05
U5 .12 .20 .27 .21 .15 .18
U6 .21 .19 .25 .24 .30 .30
U7 .19 .19 .35 .25 .29 .21
U8 .22 .22 .34 .28 .30 .27
U9 .19 .17 .28 .18 .26 .28
U10 .29 .31 .45 .35 .34 .26
U11 .08 .04 .15 .08 .03 .04
U12 .37 .29 .31 .38 .34 .30
U13 .24 .18 .24 .21 .27 .15
U14 .21 .20 .37 .25 .34 .25
U15 .19 .16 .36 .21 .20 .25
U16 .21 .19 .34 .30 .23 .11

Mean Correlation u .22
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Low-Angle Strafe

Inter-Individual Correlation Matrix

I1 through 16 are individual inatruotor pilots
W1 through W7 are individual weapons systems officers

Ratiin Scores

I1 12 13 14 IS 16

W1 .40 .40 .42 .52 .54 .44
W2 .38 .32 .44 .44 .45 .34
W3 .50 .43 .50 .54 .45 .48
W0 .36 .38 .42 .40 .39 .38W5 .05 .11 .18 .05 .05 .16

W6 .45 .45 .51 .61 .46 .45
W7 .45 .45 .34 .51 .46 .47

Mean Correlation u .39

uistanoes in Multidimenuional1Sace

I 12 13 14 15 16

W1 .40 .36 .48 .48 .47 .35
W2 .51 .48 .52 .63 .45 .44
W3 .39 .45 .53 .45 .43 .38
W4 .16 .15 .14 .12 .03 .26
W5 .44 .49 .51 .55 .52 .46
W6 .46 .50 .55 .62 .47 .52
W7 .51 .54 .42 .57 .43 .45

Mean Correlation a .43
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Low-Angle Strafe

Inter-Individual Correlation Matrix

Ul through U16 are individual undergraduate pilots
We through W7 are Individual weapons systems offioers

Wi W2 W3 W4 W5 W6 W7

Ratitn oores

U1 .20 .24 .21 .21 .13 .22 .16
U2 .26 .36 .24 .30 .18 .31 .25
U3 .15 .27 .16 .23 .20 .26 .11
U4 .14 .22 .15 .16 .23 .23 .09
U15 21 .25 .20 .21 .16 .19 .16
U6 .25 .36 .30 .23 .18 .36 .29
U7 .31 .40 .21 .30 .15 .33 .22
U8 .28 .37 .25 .25 .19 .35 .28
09 .26 .28 .22 .31 .14 .33 .23

U10 .35 .45 .41 .33 .20 .44 .28
U11 .06 .08 .13 .10 .07 .15 .03
U12 .28 .33 .33 .35 .10 .30 .24
U13 .33 .33 .20 .25 .09 .32 .21
U14 .27 .30 .22 .23 .17 .30 .22
U15 .26 .26 .17 .21 .26 .30 .14
UM6 .26 .32 .26 .31 .14 .29 .18

Mean Correlation m .24

Distanes jLn Multidimensional Sosos

U1 .23 .15 .21 .15 .25 .26 .30
U2 .*41 .23 .29 .16 .26 .28 .35
U3 .25 .18 .20 .08 .14 .21 .19
U4 .20 .09 .12 .09 .07 .18 .11
U5 .30 .25 .22 .12 .29 .29 .26
U6 .35 .26 .28 .11 .25 .37 .28
U7 .33 .25 .26 .06 .31 .39 .25
U18 .6 .28 .31 .12 .37 .36 .32
U9 .2? .23 .32 .11 .25 .36 .25
110 .A5 .41 .34 .10 .37 .50 .34
111 .05 .17 .21 .01 .08 .10 .08
U12 .31 .38 .39 .06 .33 .42 .26
013 .30 .22 .21 .03 .2T .28 .24
314 .32 .26 .28 .15 .29 .32 .31
UlS .33 .20 .28 .23 .29 .35 .22
U16 .40 .31 .38 .05 .34 .34 .26

Mean Correlation * .25
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